sklearn 加州房价数据集 fetch_california_housing 出错 403: Forbidden 修复方案
摘要 当使用fetch_california_housing()加载加州房价数据时出现403错误,可通过手动下载数据文件解决。文章提供了替代方案代码,包含从源URL下载数据、解压处理、数据重组以及特征工程等完整流程。该方案创建了与scikit-learn相同格式的数据对象,包含20,640条房屋记录、8个特征和1个目标值,并保留了原始数据集的完整描述信息。实现过程参考了官方文档和社区解决方案,确保
·
问题
加载加州房价数据时出现 403 错误 HTTP Error 403: Forbidden
from sklearn.datasets import fetch_california_housing
california = fetch_california_housing()
print(california.target.shape)
解决方案
运行下述代码,然后再运行上述的 fetch_california_housing() 可成功运行
import requests
import os
import tarfile
import numpy as np
from types import SimpleNamespace
from sklearn import datasets
# 参考:
# https://blog.csdn.net/getalong/article/details/141201658
# https://inria.github.io/scikit-learn-mooc/python_scripts/datasets_california_housing.html
fetch_california_housing_manual_desc = '''
.. _california_housing_dataset:
California Housing dataset
--------------------------
**Data Set Characteristics:**
:Number of Instances: 20640
:Number of Attributes: 8 numeric, predictive attributes and the target
:Attribute Information:
- MedInc median income in block group
- HouseAge median house age in block group
- AveRooms average number of rooms per household
- AveBedrms average number of bedrooms per household
- Population block group population
- AveOccup average number of household members
- Latitude block group latitude
- Longitude block group longitude
:Missing Attribute Values: None
This dataset was obtained from the StatLib repository.
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
The target variable is the median house value for California districts,
expressed in hundreds of thousands of dollars ($100,000).
This dataset was derived from the 1990 U.S. census, using one row per census
block group. A block group is the smallest geographical unit for which the U.S.
Census Bureau publishes sample data (a block group typically has a population
of 600 to 3,000 people).
A household is a group of people residing within a home. Since the average
number of rooms and bedrooms in this dataset are provided per household, these
columns may take surprisingly large values for block groups with few households
and many empty houses, such as vacation resorts.
It can be downloaded/loaded using the
:func:`sklearn.datasets.fetch_california_housing` function.
.. rubric:: References
- Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,
Statistics and Probability Letters, 33 (1997) 291-297
'''
def download_file(url, directory, filename):
# 确保目录存在
os.makedirs(directory, exist_ok=True)
# 完整文件路径
filepath = os.path.join(directory, filename)
# 下载文件
response = requests.get(url, stream=True)
response.raise_for_status() # 检查请求是否成功
# 将内容写入文件
with open(filepath, 'wb') as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
print(f"文件已下载到: {filepath}")
def fetch_california_housing_manual():
data_home = datasets.get_data_home()
archive_path = os.path.join(data_home, 'cal_housing.tgz')
if not os.path.exists(archive_path):
download_file("https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.tgz", data_home, 'cal_housing.tgz')
with tarfile.open(mode="r:gz", name=archive_path) as f:
cal_housing = np.loadtxt(
f.extractfile("CaliforniaHousing/cal_housing.data"), delimiter=","
)
# Columns are not in the same order compared to the previous
# URL resource on lib.stat.cmu.edu
columns_index = [8, 7, 2, 3, 4, 5, 6, 1, 0]
cal_housing = cal_housing[:, columns_index]
feature_names = [
"MedInc",
"HouseAge",
"AveRooms",
"AveBedrms",
"Population",
"AveOccup",
"Latitude",
"Longitude",
]
target_names = ['MedHouseVal']
target, data = cal_housing[:, 0], cal_housing[:, 1:]
# avg rooms = total rooms / households
data[:, 2] /= data[:, 5]
# avg bed rooms = total bed rooms / households
data[:, 3] /= data[:, 5]
# avg occupancy = population / households
data[:, 5] = data[:, 4] / data[:, 5]
# target in units of 100,000
target = target / 100000.0
result = {
'data': data,
'target': target,
'feature_names': feature_names,
'target_names': target_names,
'DESCR': fetch_california_housing_manual_desc,
}
obj = SimpleNamespace(**result)
return obj
california = fetch_california_housing_manual()
print(california.data)
DAMO开发者矩阵,由阿里巴巴达摩院和中国互联网协会联合发起,致力于探讨最前沿的技术趋势与应用成果,搭建高质量的交流与分享平台,推动技术创新与产业应用链接,围绕“人工智能与新型计算”构建开放共享的开发者生态。
更多推荐

所有评论(0)