开源AI数字人系统代码
(用于人脸交换和数字人面部合成的开源工具,此处借鉴其面部处理思路)相关思路,结合之前代码结构为你呈现示例。base_video_path = "digital_human_base_video.mp4" # 假设已有基础数字人视频。# 唇形同步模拟,根据语音时长和音素特征调整视频帧(优化版本)。# 模拟数字人表情和动作,结合语音情感分析(优化模拟)。print(f"数字人回复: {respo
开源 AI 数字人系统的功能代码因不同框架和侧重点各有差异,下面以so - vad
(一个基于深度学习的语音活动检测开源库)和DeepFaceLab
(用于人脸交换和数字人面部合成的开源工具,此处借鉴其面部处理思路)相关思路,结合之前代码结构为你呈现示例。此示例在语音处理、面部特征与动作模拟上参考了开源库的实现理念,进一步完善数字人系统功能。运行前请确保安装SpeechRecognition
、transformers
、gTTS
、moviepy
、opencv - python
、tensorflow
(用于深度学习相关操作)等库,安装命令如下:
import speech_recognition as sr
from transformers import AutoTokenizer, AutoModelForCausalLM
from gtts import gTTS
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeVideoClip, vfx
import os
import numpy as np
import cv2
import tensorflow as tf
# 语音识别函数
def recognize_speech():
r = sr.Recognizer()
with sr.Microphone() as source:
print("请说话...")
audio = r.listen(source)
try:
text = r.recognize_google(audio)
print(f"识别到的内容: {text}")
return text
except sr.UnknownValueError:
print("无法识别语音")
return ""
except sr.RequestError as e:
print(f"请求错误; {e}")
return ""
# 自然语言理解与回复生成函数
def generate_response(user_input):
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT - medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT - medium")
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
output = model.generate(input_ids=input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
return response
# 语音合成并返回音频文件路径
def text_to_speech(text, lang='zh - CN'):
tts = gTTS(text=text, lang=lang)
tts.save("response.mp3")
return "response.mp3"
# 唇形同步模拟,根据语音时长和音素特征调整视频帧(优化版本)
def lip_sync_video(video_path, audio_path):
video = VideoFileClip(video_path)
audio = AudioFileClip(audio_path)
video_duration = video.duration
audio_duration = audio.duration
# 借助开源语音活动检测思路,更精准分析语音有效部分
r = sr.Recognizer()
audio_data = sr.AudioData(audio.tobytes(), audio.fps, audio.sample_width)
segments = r.adjust_for_ambient_noise(audio_data)
word_count = len(segments.split())
if video_duration > audio_duration:
new_fps = video.fps * (audio_duration / video_duration)
new_video = video.set_fps(new_fps)
new_video = new_video.set_duration(audio_duration)
else:
new_video = video.set_duration(audio_duration)
# 模拟根据音素调整嘴唇动作(基于面部关键点检测,类似DeepFaceLab思路)
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
def adjust_lips(frame):
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
lips_y = y + int(h * 0.6)
lips_height = int(h * 0.2)
lips_frame = frame[lips_y:lips_y + lips_height, x:x + w]
resized_lips = cv2.resize(lips_frame, None, fx=(1 + word_count / 10), fy=1)
frame[lips_y:lips_y + resized_lips.shape[0], x:x + resized_lips.shape[1]] = resized_lips
return frame
new_video = new_video.fl(adjust_lips)
new_video.write_videofile("lipsynced_video.mp4", codec='libx264')
return "lipsynced_video.mp4"
# 模拟数字人表情和动作,结合语音情感分析(优化模拟)
def simulate_digital_human_expression_and_action(video_path, audio_path):
video = VideoFileClip(video_path)
audio = AudioFileClip(audio_path)
audio_duration = audio.duration
# 简单的语音情感分析模拟(实际需专业情感分析库)
# 这里根据音频音量判断情感,音量高假设为积极情感
audio_data = audio.to_soundarray(fps=audio.fps)
max_volume = np.max(np.abs(audio_data))
if max_volume > 0.5: # 假设0.5为积极情感阈值
def happy_action(frame):
height, width, _ = frame.shape
M = cv2.getRotationMatrix2D((width / 2, height / 2), 10, 1.1)
return cv2.warpAffine(frame, M, (width, height))
new_video = video.fl(happy_action)
else:
new_video = video
new_video.write_videofile("expression_and_action_simulated_video.mp4", codec='libx264')
return "expression_and_action_simulated_video.mp4"
# 主函数,整合所有功能
def main():
base_video_path = "digital_human_base_video.mp4" # 假设已有基础数字人视频
user_input = recognize_speech()
while user_input.lower() != "退出":
response = generate_response(user_input)
print(f"数字人回复: {response}")
audio_path = text_to_speech(response)
synced_video_path = lip_sync_video(base_video_path, audio_path)
expression_and_action_path = simulate_digital_human_expression_and_action(synced_video_path, audio_path)
# 这里未涉及直播推流,若需可参考之前代码添加
os.remove(audio_path)
os.remove(synced_video_path)
os.remove(expression_and_action_path)
user_input = recognize_speech()
if __name__ == "__main__":
main()

DAMO开发者矩阵,由阿里巴巴达摩院和中国互联网协会联合发起,致力于探讨最前沿的技术趋势与应用成果,搭建高质量的交流与分享平台,推动技术创新与产业应用链接,围绕“人工智能与新型计算”构建开放共享的开发者生态。
更多推荐
所有评论(0)