前言

FastGPT 是一个基于 LLM 大语言模型的知识库问答系统,提供开箱即用的数据处理、模型调用等能力,它背后依赖OneApi开源项目来访问各种大语言模型提供的能力。各大语言模型提供的访问接口规范不尽相同,为此OneApi项目提供了统一的API接口去对接各种大语言模型。FastGPT的部署架构如图所示:

前排提示,文末有大模型AGI-CSDN独家资料包哦!

本文章将介绍如何部署OneApi和FastGPT,以及两种在线大语言模型(AzureOpenAI讯飞星火3.5)的配置方法。

我将在Windows系统的WSL子系统上进行部署,WSL子系统安装的是Ubuntu22 Linux系统,WSL的部署方式完全适用于真实的Linux系统。

一、部署OneApi

OneApi项目开源地址:https://github.com/songquanpeng/one-api

1.在/opt目录下创建oneapi目录
cd opt
mkdir oneapi
cd oneapi



2.编辑docker-compose.yml文件

在/opt/oneapi目录下创建docker-compose.yml文件,将下面的内容复制进去并保存

version: '3.8'

services:
  oneapi:
    container_name: oneapi
    image: justsong/one-api:latest
    restart: unless-stopped
    ports:
      - 3001:3000
    networks:
      - llm_net
    volumes:
      - ./data:/data
    environment:
      - TZ=Asia/Shanghai

networks:
  llm_net:
    name: llm_net
    external: true  



3.创建llm_net docker网络
docker network create llm_net



4.运行oneapi
docker compose up -d



5.配置AzureOpenAI渠道

登录http://localhost:3001,用户名:root,密码:123456。

如果你没有申请AzureOpenAI,可以直接查看讯飞星火的配置方式。其实申请AzureOpenAI并不难,网上教程很多,只要真实填写相关信息,一般24小时内就可以通过。

接下来我们添加AzureOpenAI渠道,按照图中的方式填写就好了。这里有一个需要注意的地方就是名称那一项填的是Azure上面的部署名称,而这个部署名称必须要和模型名称一致(很奇怪的做法,GitHub上已经有人提了issue,正在解决)

6.测试

渠道添加成功后,可以在渠道列表页面点击“测试”按钮,如果没有问题,会返回测试成功。

7.创建令牌

令牌的名称随便填,由于是测试,可以把额度设置为无限额度。

提交后,可以在令牌列表页面复制刚刚创建的令牌,这个令牌将在部署FastGPT时用到。

二、部署fastgpt
1.在/opt目录下创建fastgpt目录
cd opt
mkdir fastgpt
cd fastgpt



2.编辑docker-compose.yml文件

请先阅读FastGPT官方部署文档:https://doc.fastgpt.in/docs/development/docker/

下载docker-compose.yml文件和config.json文件

curl -O https://raw.githubusercontent.com/labring/FastGPT/main/files/deploy/fastgpt/docker-compose.yml
curl -O https://raw.githubusercontent.com/labring/FastGPT/main/projects/app/data/config.json



编辑docker-compose.yml文件,主要是更改了容器网络,数据库用户名密码之类的

version: '3.8'
services:
  pg:
    image: ankane/pgvector:v0.5.0 # git
    # image: registry.cn-hangzhou.aliyuncs.com/fastgpt/pgvector:v0.5.0 # 阿里云
    container_name: pg
    restart: always
    ports: 
      - 5432:5432
    networks:
      - llm_net
    environment:
      - POSTGRES_USER=fastgpt
      - POSTGRES_PASSWORD=123456
      - POSTGRES_DB=fastgpt
    volumes:
      - ./pg/data:/var/lib/postgresql/data

  mongo:
    image: mongo:5.0.18
    # image: registry.cn-hangzhou.aliyuncs.com/fastgpt/mongo:5.0.18 # 阿里云
    container_name: mongo
    ports:
      - 27017:27017
    networks:
      - llm_net
    command: mongod --keyFile /data/mongodb.key --replSet rs0
    environment:
      - MONGO_INITDB_ROOT_USERNAME=fastgpt
      - MONGO_INITDB_ROOT_PASSWORD=123456
    volumes:
      - ./mongo/data:/data/db
      - ./mongodb.key:/data/mongodb.key

  fastgpt:
    container_name: fastgpt
    image: ghcr.io/labring/fastgpt:latest # git
    # image: registry.cn-hangzhou.aliyuncs.com/fastgpt/fastgpt:latest # 阿里云
    ports:
      - 3002:3000
    networks:
      - llm_net
    depends_on:
      - mongo
      - pg
    restart: always
    environment:
      - DEFAULT_ROOT_PSW=123456
      - OPENAI_BASE_URL=http://192.168.2.117:3001/v1
      - CHAT_API_KEY=sk-XXXXX # 在OneApi中创建的令牌
      - DB_MAX_LINK=5 # database max link
      - TOKEN_KEY=any
      - ROOT_KEY=root_key
      - FILE_TOKEN_KEY=filetoken
      # mongo 配置,不需要改. 用户名myname,密码mypassword。
      - MONGODB_URI=mongodb://fastgpt:123456@mongo:27017/fastgpt?authSource=admin
      # pg配置. 不需要改
      - PG_URL=postgresql://fastgpt:123456@pg:5432/fastgpt
    volumes:
      - ./config.json:/app/data/config.json

networks:
  llm_net:
    name: llm_net
    external: true  



这里要注意的 OPENAI_BASE_URL=http://192.168.2.117:3001/v1,我本来想设置成http://oneapi:3000/v1,因为fastgpt与oneapi在同一个docker网络,但fastgpt访问不了这个地址,可能是哪里没有设置对,只好先用本机ip来访问。

3.编辑config.json文件

改动如下,name改成在oneapi配置中的一样

4.运行fastgpt
docker compose up -d



运行成功之后,不要忘了对MongoDb进行配置,直接按官网的步骤进行操作:

# 查看 mongo 容器是否正常运行
docker ps
# 进入容器
docker exec -it mongo bash
# 连接数据库
mongo -u myname -p mypassword --authenticationDatabase admin
# 初始化副本集。如果需要外网访问,mongo:27017 可以改成 ip:27017。但是需要同时修改 FastGPT 连接的参数(MONGODB_URI=mongodb://myname:mypassword@mongo:27017/fastgpt?authSource=admin => MONGODB_URI=mongodb://myname:mypassword@ip:27017/fastgpt?authSource=admin)
rs.initiate({
  _id: "rs0",
  members: [
    { _id: 0, host: "mongo:27017" }
  ]
})
# 检查状态。如果提示 rs0 状态,则代表运行成功
rs.status()



5.测试

官网说OPENAI_BASE_URL地址后面要加v1,当我加了的时候,测试结果如下,报404:

于是去oneapi容器查看日志,可以看到fastgpt请求已经转到了oneapi,oneapi又去请求AzureOpenAI, AzureOpenAI返回404。于是去Azure上测试部署后的聊天功能,按F12查看网络请求,发现路由里面没有v1

于是更改docker-compose.yml文件,把OPENAI_BASE_URL值中的v1去掉了,重新执行docker-compose up -d ,重启之后继续测试,这次的报错就不一样了,如下图所示:

查看oneapi日志,请求结果是200,但没有响应内容,找了很久的原因,无法得知是OneApi还是Azure OpenAI的问题,于是转而去测试讯飞星火大模型。

三、配置讯飞星火认知大模型
1.创建讯飞模型应用

先去官方领取讯飞星火认知大模型的个人免费试用套餐(我选的是V3.5版本):https://xinghuo.xfyun.cn/sparkapi?scr=price

然后去到讯飞开放平台去创建基于v3.5版本的应用,得到APPID、APISecret、APIKey三个值(在OneApi中需要用到)

2.在oneapi页面添加星火模型渠道

3.编辑fastgpt的config.json文件

增加星火模型的配置

4.重启fastgpt容器

注意:如果你之前的操作把OPENAI_BASE_URL的v1去掉了,请把它补上,然后执行命令:docker-compose up -d

5.测试

AI模型选择上面配置的spark3.5,测试成功

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

Logo

DAMO开发者矩阵,由阿里巴巴达摩院和中国互联网协会联合发起,致力于探讨最前沿的技术趋势与应用成果,搭建高质量的交流与分享平台,推动技术创新与产业应用链接,围绕“人工智能与新型计算”构建开放共享的开发者生态。

更多推荐