【数据分析入门】R语言之广义线性回归与logistics回归
广义线性回归?glmdata(breslow.dat, package="robust") names(breslow.dat)summary(breslow.dat[c(6,7,8,10)])attach(breslow.dat)> fit <-glm(sumY ~ Base + Age + Trt,data=breslow.dat, family=poisson(link="log
·
广义线性回归
?glm
data(breslow.dat, package="robust") names(breslow.dat)
summary(breslow.dat[c(6,7,8,10)])
attach(breslow.dat)
> fit <-glm(sumY ~ Base + Age + Trt,data=breslow.dat, family=poisson(link="log"))
> summary(fit)
coef(fit)
exp(coef(fit))
logistics回归
data(Affairs, package="AER") summary(Affairs)
table(Affairs$affairs)
prop.table(table(Affairs$affairs)) prop.table(table(Affairs$gender))
Affairs$ynaffair[Affairs$affairs > 0] <-1 Affairs$ynaffair[Affairs$affairs==0] <-0 Affairs$ynaffair <-factor(Affairs$ynaffair, levels=c(0,1),labels=c("NO","Yes"))
table(Affairs$ynaffair)
attach(Affairs)
fit<-glm(ynaffair ~ gender + age + yearsmarried + children +
religiousness+ education+occupation +rating, data=Affairs,family=binomial())
summary(fit)
fit1<-glm(ynaffair ~ age + yearsmarried +
religiousness+ +rating, data=Affairs,family=binomial())
summary(fit)
anova(fit,fit1,test="Chisq")
data.frame(rating =c(1,2,3,4,5)
age = mean(Affairs$age),
yearsmarried = mean(Affairs$yearsmarried), rcliaiousness = mean(Affairs$religiousness)
testdata$prob <- predict(fitl, newdata=testdata, type="response")
testdata <-data.frame(rating = mean(Affairs$rating),
age = seq(17,57,10),
yearsmarried = mean(Affairs$yearsmarried), reliaiousness= mean(Affairs$religiousness)

DAMO开发者矩阵,由阿里巴巴达摩院和中国互联网协会联合发起,致力于探讨最前沿的技术趋势与应用成果,搭建高质量的交流与分享平台,推动技术创新与产业应用链接,围绕“人工智能与新型计算”构建开放共享的开发者生态。
更多推荐
所有评论(0)