深度学习压缩模型精度调研
引言调查整理了一下关于模型精度的数据,该数据主要针对模型压缩领域使用,其他领域可作为一定的参考文章目录引言MNIST2019CIFIAR2019vgg16VGG19Resnet2019Resnet全部resnet18resnet32resnet56, resnet110ResNet56,ResNet110MNIST2019TitleVenueTypeCodeTo...
·
引言
调查整理了一下关于模型精度的数据,该数据主要针对模型压缩领域使用,其他领域可作为一定的参考
文章目录
MNIST
2019
LeNet

| Title | Venue | Type | Code |
|---|---|---|---|
| Towards Optimal Structured CNN Pruning via Generative Adversarial Learning | CVPR | F |
[github(pytorch)] |

| Title | Venue | Type | Code |
|---|
| [Towards Optimal Structured CNN Pruning via Generative Adversarial Learning](https://arxiv.org/abs/1903.09291) | CVPR | `F` | [github(pytorch)]
CIFIAR10
2019
vgg16

| Title | Venue | Type | Code |
|---|---|---|---|
| Rethinking the Value of Network Pruning | ICLR | F |
github(pytorch) |

| Title | Venue | Type | Code |
|---|---|---|---|
| Variational Convolutional Neural Network Pruning | CVPR | - | - |

| Title | Venue | Type | Code |
|---|---|---|---|
| Towards Optimal Structured CNN Pruning via Generative Adversarial Learning | CVPR | F |
[github(pytorch)] |

| Title | Venue | Type | Code |
|---|---|---|---|
| Approximated Oracle Filter Pruning for Destructive CNN Width Optimization github | ICML | F |
- |
VGG19

| Title | Venue | Type | Code |
|---|---|---|---|
| EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis | ICML | W |
github |

| Title | Venue | Type | Code |
|---|---|---|---|
| Rethinking the Value of Network Pruning | ICLR | F |
github(pytorch) |
Resnet
2019
Resnet全部

| Title | Venue | Type | Code |
|---|---|---|---|
| Variational Convolutional Neural Network Pruning | CVPR | - | - |

| Title | Venue | Type | Code |
|---|---|---|---|
| Centripetal SGD for Pruning Very Deep Convolutional Networks with Complicated Structure | CVPR | F |
[github(tensorflow)] |

| Title | Venue | Type | Code |
|---|---|---|---|
| Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks | IJCAI | F |
github(pytorch) |
resnet18

| Title | Venue | Type | Code |
|---|---|---|---|
| OICSR: Out-In-Channel Sparsity Regularization for Compact Deep Neural Networks | CVPR | F |
github(pytorch) |
resnet32

| Title | Venue | Type | Code |
|---|---|---|---|
| EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis | ICML | W |
github |
resnet56, resnet110

| Title | Venue | Type | Code |
|---|---|---|---|
| Rethinking the Value of Network Pruning | ICLR | F |
github(pytorch) |
ResNet56,ResNet110

| Title | Venue | Type | Code |
|---|---|---|---|
| Towards Optimal Structured CNN Pruning via Generative Adversarial Learning | CVPR | F |
[github(pytorch)] |
CIFIAR-100
2019
VGG16

| Title | Venue | Type | Code |
|---|---|---|---|
| Variational Convolutional Neural Network Pruning | CVPR | - | - |
VGG19

| Title | Venue | Type | Code |
|---|---|---|---|
| Rethinking the Value of Network Pruning | ICLR | F |
github(pytorch) |
DAMO开发者矩阵,由阿里巴巴达摩院和中国互联网协会联合发起,致力于探讨最前沿的技术趋势与应用成果,搭建高质量的交流与分享平台,推动技术创新与产业应用链接,围绕“人工智能与新型计算”构建开放共享的开发者生态。
更多推荐



所有评论(0)