Fashion-mnist数据集
Fashion-mnist数据集包括60000张训练图像和10000张测试图像,共有10个服装类别(0~9),每张图像均为28x28的单通道灰度图像。[链接]:https://pan.baidu.com/s/1EjE1Jjgk8tRwncYZWV3I-Q。2. 通过python调用。[大小]:29.45MB。1. 通过keras调用。[提取码]:qiwk。
下载
Fashion-mnist数据集下载:
[大小]:29.45MB
[链接]:https://pan.baidu.com/s/1EjE1Jjgk8tRwncYZWV3I-Q
[提取码]:qiwk
简介
Fashion-mnist数据集包括60000张训练图像和10000张测试图像,共有10个服装类别(0~9),每张图像均为28x28的单通道灰度图像
标签与服装的对应关系如下:
-
0 T-shirt/top
-
1 Trouser
-
2 Pullover
-
3 Dress
-
4 Coat
-
5 Sandal
-
6 Shirt
-
7 Sneaker
-
8 Bag
-
9 Ankle boot
数据集调用
1. 通过keras调用
keras首次调用时会进行fashion-mnist数据集的下载,若下载速度过慢,可以将云盘中获得的fashion-mnist文件夹置于keras指定目录下(win10):
'C:\Users\xxx\.keras\datasets'
from keras.datasets import fashion_mnist
import matplotlib.pyplot as plt
(x_train,y_train),(x_test,y_test)=fashion_mnist.load_data()
for i in range(1,101):
plt.subplot(10,10,i)
plt.imshow(x_train[i],'gray')
plt.axis('off')
plt.show()
结果显示如下:
2. 通过python调用
import numpy as np
import os
import gzip
root_dir = 'E:\\微信公众号素材\\datasets\\fashion-mnist'
for root, dirs, files in os.walk(root_dir):
for file in files:
decom_filename = file.replace('.gz', '')
f=gzip.open(os.path.join(root,file))
with open(os.path.join(root, decom_filename), 'wb') as newfile:
newfile.write(f.read())
f.close()
def load_data():
files = ['train-labels-idx1-ubyte', 'train-images-idx3-ubyte',
't10k-labels-idx1-ubyte', 't10k-images-idx3-ubyte']
with open(os.path.join(root_dir, files[0]), 'rb') as f:
y_train=np.frombuffer(f.read(), 'uint8', offset=8)
with open(os.path.join(root_dir, files[1]),'rb') as f:
x_train=np.frombuffer(f.read(), 'uint8', offset=16).reshape(len(y_train), 28, 28)
with open(os.path.join(root_dir, files[2]), 'rb') as f:
y_test=np.frombuffer(f.read(), 'uint8', offset=8)
with open(os.path.join(root_dir, files[3]), 'rb') as f:
x_test=np.frombuffer(f.read(), 'uint8', offset=16).reshape(len(y_test), 28, 28)
return (x_train, y_train), (x_test, y_test)
if __name__ == '__main__':
import matplotlib.pyplot as plt
(x_train, y_train), (x_test, y_test) = load_data()
for i in range(1, 101):
plt.subplot(10, 10, i)
plt.imshow(x_train[i-1], 'gray')
plt.axis('off')
plt.show()
结果同样显示如下:

DAMO开发者矩阵,由阿里巴巴达摩院和中国互联网协会联合发起,致力于探讨最前沿的技术趋势与应用成果,搭建高质量的交流与分享平台,推动技术创新与产业应用链接,围绕“人工智能与新型计算”构建开放共享的开发者生态。
更多推荐
所有评论(0)