在这里插入图片描述

采用的数据是GEO上的200079973
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
RMA法预处理normal样本
setwd(“”)
library(affyPLM)
library(affy)
Data<-ReadAffy()
sampleNames(Data)
N=length(Data)
#用RMA预处理数据
eset.rma<-rma(Data)
#获取表达数据并输出到表格
normal_exprs<-exprs(eset.rma)
probeid<-rownames(normal_exprs)
normal_exprs<-cbind(probeid,normal_exprs)
write.table(normal_exprs,file=“normal.expres.txt”,sep=‘\t’,quote=F,row.names=F)

RMA法预处理tumor样本
setwd(“”)
library(affyPLM)
library(affy)
Data<-ReadAffy()
sampleNames(Data)
N=length(Data)
#用RMA预处理数据
eset.rma<-rma(Data)
#获取表达数据并输出到表格
normal_exprs<-exprs(eset.rma)
probeid<-rownames(normal_exprs)
normal_exprs<-cbind(probeid,normal_exprs)
write.table(normal_exprs,file=“tumor.expres.txt”,sep=‘\t’,quote=F,row.names=F)

合并N和T的数据
#setwd(" “)
normal_exprs<-read.table(“normal.expres.txt”,header=T,sep=”\t")
tumor_exprs<-read.table(“tumor.expres.txt”,header=T,sep=“\t”)
#讲T和N合并
probe_exprs<-merge(normal_exprs,tumor_exprs,by=“probeid”)
write.table(probe_exprs,file=“cancer.probeid.exprs.txt”,sep=‘\t’,quote=F,row.names=F)

Logo

DAMO开发者矩阵,由阿里巴巴达摩院和中国互联网协会联合发起,致力于探讨最前沿的技术趋势与应用成果,搭建高质量的交流与分享平台,推动技术创新与产业应用链接,围绕“人工智能与新型计算”构建开放共享的开发者生态。

更多推荐