基于YOLOv26的智能电网设施监测系统
本文提出了一种基于YOLOv26的智能电网设施监测系统。该系统采用分层架构设计,包含数据采集、预处理、目标检测、状态分析、预警决策和部署集成六大核心模块。系统通过固定摄像头、无人机和巡检机器人获取电网设施的多源图像数据,利用YOLOv26算法进行目标检测和异常识别,并采用TensorRT加速模型推理。技术栈涵盖PyTorch、OpenCV、DeepSORT等工具,支持从数据采集到可视化展示的全流程
文章目录
基于YOLOv26的智能电网设施监测系统
1. 系统架构
1.1 整体架构
本系统采用分层架构设计,主要包含以下核心模块:
- 数据采集模块:通过固定摄像头、无人机和巡检机器人获取电网设施图像数据
- 数据预处理模块:对原始数据进行标准化、增强和标注
- 目标检测模块:基于YOLOv26检测电网设施的异常状态和潜在风险
- 状态分析模块:分析电网设施的运行状态和健康状况
- 预警与决策模块:根据检测结果生成预警信息和维护建议
- 部署与集成模块:实现系统在边缘设备和云端的部署,与现有电网管理系统集成
1.2 技术栈
| 类别 | 技术/库 | 版本 | 用途 |
|---|---|---|---|
| 核心框架 | YOLOv26 | v1.0 | 目标检测 |
| 数据处理 | OpenCV | 4.8.0 | 图像处理 |
| 数据增强 | Albumentations | 1.3.1 | 数据增强 |
| 模型训练 | PyTorch | 2.0.0 | 模型训练 |
| 目标跟踪 | DeepSORT | v1.2 | 目标跟踪 |
| 模型部署 | ONNX | 1.14.0 | 模型导出 |
| 无人机控制 | MAVSDK | 1.40.0 | 无人机控制 |
| 边缘计算 | TensorRT | 8.6.1 | 模型加速 |
| 数据存储 | InfluxDB | 2.7.1 | 时序数据存储 |
| 可视化 | Grafana | 10.2.0 | 数据可视化 |
2. 核心功能模块
2.1 数据采集模块
功能描述:
- 通过固定摄像头、无人机和巡检机器人获取电网设施图像数据
- 支持多源数据融合,包括可见光、红外和热成像数据
- 实现数据的实时传输和存储
代码实现:
import cv2
import numpy as np
import time
import threading
from datetime import datetime
from mavsdk import System
import asyncio
class DataCollector:
def __init__(self, config):
self.config = config
self.cameras = {}
self.data_queue = []
self.running = False
def initialize_cameras(self):
"""初始化摄像头"""
for cam_id, cam_config in self.config.get('cameras', {}).items():
try:
cap = cv2.VideoCapture(cam_config['index'])
cap.set(cv2.CAP_PROP_FRAME_WIDTH, cam_config.get('width', 1280))
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, cam_config.get('height', 720))
self.cameras[cam_id] = cap
print(f"Camera {cam_id} initialized")
except Exception as e:
print(f"Failed to initialize camera {cam_id}: {e}")
def capture_from_camera(self, cam_id):
"""从指定摄像头捕获图像"""
if cam_id in self.cameras:
cap = self.cameras[cam_id]
ret, frame = cap.read()
if ret:
timestamp = datetime.now().isoformat()
return {
'frame': frame,
'timestamp': timestamp,
'source': f'camera_{cam_id}'
}
return None
def capture_from_all_cameras(self):
"""从所有摄像头捕获图像"""
frames = []
for cam_id in self.cameras:
frame_data = self.capture_from_camera(cam_id)
if frame_data:
frames.append(frame_data)
return frames
class UAVDataCollector:
def __init__(self, drone_ip="127.0.0.1", drone_port=50040):
self.drone = System()
self.drone_ip = drone_ip
self.drone_port = drone_port
async def connect(self):
"""连接到无人机"""
await self.drone.connect(system_address=f"udp://{self.drone_ip}:{self.drone_port}")
print("Connected to drone")
async def plan_inspection_mission(self, facility_coords, altitude=30):
"""规划巡检任务"""
# 简化实现,实际应考虑设施形状、障碍物等因素
waypoints = []
for coord in facility_coords:
waypoints.append((coord[0], coord[1], altitude))
return waypoints
async def execute_inspection_mission(self, waypoints, image_save_dir):
"""执行巡检任务并采集数据"""
if not waypoints:
print("No waypoints provided")
return []
# 起飞
await self.drone.action.arm()
await self.drone.action.takeoff()
await asyncio.sleep(5)
collected_images = []
# 按路径飞行并采集图像
for i, waypoint in enumerate(waypoints):
print(f"Flying to waypoint {i+1}: {waypoint}")
# 飞行到目标点
await self.drone.action.goto_location(
waypoint[0], waypoint[1], waypoint[2], 0
)
await asyncio.sleep(10)
# 采集图像(模拟)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
image_path = f"{image_save_dir}/uav_image_{i}_{timestamp}.jpg"
# 创建模拟图像
image = np.zeros((480, 640, 3), dtype=np.uint8)
cv2.putText(image, f"Power Grid Image {i}", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
cv2.imwrite(image_path, image)
collected_images.append(image_path)
# 返航
await self.drone.action.return_to_launch()
await asyncio.sleep(10)
await self.drone.action.disarm()
print(f"Mission completed. Collected {len(collected_images)} images")
return collected_images
class DataCollectorManager:
def __init__(self, config):
self.config = config
self.camera_collector = DataCollector(config)
self.uav_collector = UAVDataCollector()
self.data_storage = []
def start_collection(self):
"""启动数据采集"""
self.camera_collector.initialize_cameras()
self.running = True
# 启动摄像头采集线程
def camera_collection_loop():
while self.running:
frames = self.camera_collector.capture_from_all_cameras()
for frame_data in frames:
self.data_storage.append(frame_data)
time.sleep(1) # 每秒采集一次
self.camera_thread = threading.Thread(target=camera_collection_loop)
self.camera_thread.daemon = True
self.camera_thread.start()
print("Data collection started")
def stop_collection(self):
"""停止数据采集"""
self.running = False
if hasattr(self, 'camera_thread'):
self.camera_thread.join(timeout=2)
# 释放摄像头资源
for cam_id, cap in self.camera_collector.cameras.items():
try:
cap.release()
except:
pass
print("Data collection stopped")
async def run_uav_inspection(self, facility_coords, image_save_dir):
"""运行无人机巡检"""
await self.uav_collector.connect()
waypoints = await self.uav_collector.plan_inspection_mission(facility_coords)
return await self.uav_collector.execute_inspection_mission(waypoints, image_save_dir)
# 示例用法
config = {
'cameras': {
'substation': {'index': 0, 'width': 1280, 'height': 720},
'transmission_tower': {'index': 1, 'width': 1280, 'height': 720},
'transformer': {'index': 2, 'width': 1280, 'height': 720}
}
}
manager = DataCollectorManager(config)
manager.start_collection()
# 运行无人机巡检(异步)
async def run_uav_inspection():
facility_coords = [(39.9042, 116.4074), (39.9045, 116.4076), (39.9043, 116.4078)]
images = await manager.run_uav_inspection(facility_coords, 'data/uav_images')
return images
# 运行10秒后停止采集
time.sleep(10)
manager.stop_collection()
print(f"Collected {len(manager.data_storage)} frames from cameras")
2.2 目标检测模块
功能描述:
- 检测电网设施的异常状态,如设备损坏、线路故障、异物入侵等
- 识别电网设施的关键组件,如变压器、断路器、绝缘子等
- 检测电网设施周围的安全隐患,如火灾、烟雾、人员违规进入等
代码实现:
import torch
from ultralytics import YOLO
class PowerGridDetector:
def __init__(self, model_path):
self.model = YOLO(model_path)
self.class_names = {
0: 'transformer',
1: 'circuit_breaker',
2: 'insulator',
3: 'transmission_line',
4: 'tower',
5: 'switchgear',
6: 'damaged_equipment',
7: 'foreign_object',
8: 'fire',
9: 'smoke',
10: 'person',
11: 'animal'
}
def detect(self, image):
"""检测图像中的目标"""
results = self.model(image)
detections = []
for result in results:
for box in result.boxes:
class_id = int(box.cls[0])
confidence = float(box.conf[0])
x1, y1, x2, y2 = box.xyxy[0].tolist()
# 计算目标大小
width = x2 - x1
height = y2 - y1
area = width * height
detections.append({
'class': self.class_names[class_id],
'confidence': confidence,
'bbox': [x1, y1, x2, y2],
'size': {'width': width, 'height': height, 'area': area}
})
return detections
def analyze_facility(self, detections):
"""分析设施状况"""
facility_analysis = {
'normal_equipment': 0,
'damaged_equipment': 0,
'foreign_objects': 0,
'fires': 0,
'smoke': 0,
'people': 0,
'animals': 0
}
for detection in detections:
class_name = detection['class']
if class_name in ['transformer', 'circuit_breaker', 'insulator', 'transmission_line', 'tower', 'switchgear']:
facility_analysis['normal_equipment'] += 1
elif class_name == 'damaged_equipment':
facility_analysis['damaged_equipment'] += 1
elif class_name == 'foreign_object':
facility_analysis['foreign_objects'] += 1
elif class_name == 'fire':
facility_analysis['fires'] += 1
elif class_name == 'smoke':
facility_analysis['smoke'] += 1
elif class_name == 'person':
facility_analysis['people'] += 1
elif class_name == 'animal':
facility_analysis['animals'] += 1
# 计算风险评分
risk_score = 0
if facility_analysis['damaged_equipment'] > 0:
risk_score += 30 * facility_analysis['damaged_equipment']
if facility_analysis['foreign_objects'] > 0:
risk_score += 20 * facility_analysis['foreign_objects']
if facility_analysis['fires'] > 0:
risk_score += 50 * facility_analysis['fires']
if facility_analysis['smoke'] > 0:
risk_score += 25 * facility_analysis['smoke']
if facility_analysis['people'] > 0:
risk_score += 15 * facility_analysis['people']
if facility_analysis['animals'] > 0:
risk_score += 10 * facility_analysis['animals']
# 确定风险等级
if risk_score >= 100:
risk_level = 'critical'
elif risk_score >= 50:
risk_level = 'high'
elif risk_score >= 20:
risk_level = 'medium'
else:
risk_level = 'low'
return {
'facility_analysis': facility_analysis,
'risk_score': risk_score,
'risk_level': risk_level
}
# 示例用法
detector = PowerGridDetector('yolov26n_powergrid.pt')
# 检测单张图像
image = cv2.imread('data/images/substation.jpg')
detections = detector.detect(image)
# 分析设施状况
facility_analysis = detector.analyze_facility(detections)
print(f"Risk level: {facility_analysis['risk_level']}")
print(f"Risk score: {facility_analysis['risk_score']}")
print(f"Damaged equipment: {facility_analysis['facility_analysis']['damaged_equipment']}")
print(f"Foreign objects: {facility_analysis['facility_analysis']['foreign_objects']}")
print(f"Fires: {facility_analysis['facility_analysis']['fires']}")
print(f"People: {facility_analysis['facility_analysis']['people']}")
2.3 状态分析模块
功能描述:
- 分析电网设施的运行状态和健康状况
- 预测设施故障风险
- 生成维护建议
代码实现:
import numpy as np
from datetime import datetime, timedelta
class PowerGridAnalyzer:
def __init__(self):
pass
def analyze_equipment_health(self, facility_analysis, historical_data=None):
"""分析设备健康状况"""
damaged_equipment = facility_analysis['facility_analysis']['damaged_equipment']
foreign_objects = facility_analysis['facility_analysis']['foreign_objects']
fires = facility_analysis['facility_analysis']['fires']
smoke = facility_analysis['facility_analysis']['smoke']
risk_score = facility_analysis['risk_score']
# 计算健康评分
health_score = 100 - min(100, risk_score)
# 确定健康等级
if health_score >= 80:
health_level = 'excellent'
elif health_score >= 60:
health_level = 'good'
elif health_score >= 40:
health_level = 'fair'
elif health_score >= 20:
health_level = 'poor'
else:
health_level = 'critical'
# 生成维护建议
recommendations = []
if damaged_equipment > 0:
recommendations.append('Inspect and repair damaged equipment immediately')
if foreign_objects > 0:
recommendations.append('Remove foreign objects from power grid facilities')
if fires > 0:
recommendations.append('Activate fire suppression systems and evacuate area')
if smoke > 0:
recommendations.append('Investigate smoke source and check for fire')
if health_level in ['poor', 'critical']:
recommendations.append('Schedule comprehensive maintenance inspection')
return {
'health_score': health_score,
'health_level': health_level,
'recommendations': recommendations
}
def predict_failure_risk(self, facility_analysis, historical_data=None):
"""预测故障风险"""
damaged_equipment = facility_analysis['facility_analysis']['damaged_equipment']
foreign_objects = facility_analysis['facility_analysis']['foreign_objects']
fires = facility_analysis['facility_analysis']['fires']
smoke = facility_analysis['facility_analysis']['smoke']
risk_score = facility_analysis['risk_score']
# 基于当前状态预测故障风险
base_risk = risk_score / 100
# 考虑历史数据
if historical_data:
# 简单示例:如果历史上有类似情况导致故障,则增加风险
historical_failures = sum(1 for record in historical_data if record.get('failure', False))
if historical_failures > 0:
base_risk *= 1.5
# 确定风险等级
if base_risk >= 0.8:
risk_level = 'imminent'
time_to_failure = 'within 24 hours'
elif base_risk >= 0.5:
risk_level = 'high'
time_to_failure = 'within 72 hours'
elif base_risk >= 0.3:
risk_level = 'medium'
time_to_failure = 'within 7 days'
else:
risk_level = 'low'
time_to_failure = 'within 30 days'
return {
'failure_risk': min(1.0, base_risk),
'risk_level': risk_level,
'time_to_failure': time_to_failure
}
def generate_maintenance_plan(self, facility_analysis, health_analysis, failure_prediction):
"""生成维护计划"""
plan = {
'timestamp': datetime.now().isoformat(),
'facility_analysis': facility_analysis,
'health_analysis': health_analysis,
'failure_prediction': failure_prediction,
'action_items': self._generate_action_items(health_analysis, failure_prediction),
'maintenance_schedule': self._generate_maintenance_schedule(health_analysis, failure_prediction)
}
return plan
def _generate_action_items(self, health_analysis, failure_prediction):
"""生成具体行动项"""
action_items = []
# 基于健康分析的行动项
for recommendation in health_analysis['recommendations']:
priority = 'high' if 'immediately' in recommendation.lower() or 'activate' in recommendation.lower() else 'medium'
action_items.append({
'task': recommendation,
'priority': priority,
'deadline': 'Immediate' if priority == 'high' else 'Within 24 hours'
})
# 基于故障预测的行动项
if failure_prediction['risk_level'] in ['imminent', 'high']:
action_items.append({
'task': 'Emergency maintenance',
'priority': 'critical',
'deadline': 'Immediate'
})
return action_items
def _generate_maintenance_schedule(self, health_analysis, failure_prediction):
"""生成维护计划"""
# 基于健康等级和故障风险确定维护频率
if failure_prediction['risk_level'] == 'imminent':
frequency = 'Daily'
next_maintenance = datetime.now()
elif failure_prediction['risk_level'] == 'high':
frequency = 'Every 3 days'
next_maintenance = datetime.now() + timedelta(days=3)
elif health_analysis['health_level'] == 'critical':
frequency = 'Weekly'
next_maintenance = datetime.now() + timedelta(days=7)
elif health_analysis['health_level'] == 'poor':
frequency = 'Every 2 weeks'
next_maintenance = datetime.now() + timedelta(days=14)
else:
frequency = 'Monthly'
next_maintenance = datetime.now() + timedelta(days=30)
return {
'frequency': frequency,
'next_maintenance_date': next_maintenance.isoformat(),
'maintenance_parameters': ['Equipment condition', 'Foreign object removal', 'Fire safety', 'Electrical connections']
}
# 示例用法
analyzer = PowerGridAnalyzer()
health_analysis = analyzer.analyze_equipment_health(facility_analysis)
print(f"Health level: {health_analysis['health_level']}")
print(f"Health score: {health_analysis['health_score']:.2f}")
print("Recommendations:")
for rec in health_analysis['recommendations']:
print(f"- {rec}")
# 预测故障风险
failure_prediction = analyzer.predict_failure_risk(facility_analysis)
print(f"\nFailure risk: {failure_prediction['failure_risk']:.2f}")
print(f"Risk level: {failure_prediction['risk_level']}")
print(f"Time to failure: {failure_prediction['time_to_failure']}")
# 生成维护计划
maintenance_plan = analyzer.generate_maintenance_plan(facility_analysis, health_analysis, failure_prediction)
print("\nMaintenance plan:")
print(f"Action items: {len(maintenance_plan['action_items'])}")
for item in maintenance_plan['action_items']:
print(f"- {item['task']} (Priority: {item['priority']}, Deadline: {item['deadline']})")
print(f"\nMaintenance schedule: {maintenance_plan['maintenance_schedule']['frequency']}")
print(f"Next maintenance date: {maintenance_plan['maintenance_schedule']['next_maintenance_date']}")
2.4 预警与决策模块
功能描述:
- 根据检测结果生成预警信息
- 基于预警信息做出决策
- 与现有电网管理系统集成
代码实现:
import json
from datetime import datetime
class AlertManager:
def __init__(self, config=None):
self.config = config or {}
self.alerts = []
def generate_alert(self, facility_analysis, health_analysis, failure_prediction):
"""生成预警信息"""
alert_level = self._determine_alert_level(facility_analysis, health_analysis, failure_prediction)
alert_message = self._generate_alert_message(facility_analysis, health_analysis, failure_prediction, alert_level)
alert_id = f"alert_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{hash(alert_message) % 10000}"
alert = {
'alert_id': alert_id,
'timestamp': datetime.now().isoformat(),
'level': alert_level,
'message': alert_message,
'facility_analysis': facility_analysis,
'health_analysis': health_analysis,
'failure_prediction': failure_prediction,
'status': 'new'
}
self.alerts.append(alert)
return alert
def _determine_alert_level(self, facility_analysis, health_analysis, failure_prediction):
"""确定预警级别"""
# 基于火灾和烟雾的预警
if facility_analysis['facility_analysis']['fires'] > 0:
return 'critical'
if facility_analysis['facility_analysis']['smoke'] > 0:
return 'high'
# 基于设备损坏的预警
if facility_analysis['facility_analysis']['damaged_equipment'] > 3:
return 'critical'
elif facility_analysis['facility_analysis']['damaged_equipment'] > 1:
return 'high'
elif facility_analysis['facility_analysis']['damaged_equipment'] > 0:
return 'medium'
# 基于健康状况的预警
if health_analysis['health_level'] == 'critical':
return 'critical'
elif health_analysis['health_level'] == 'poor':
return 'high'
elif health_analysis['health_level'] == 'fair':
return 'medium'
# 基于故障预测的预警
if failure_prediction['risk_level'] == 'imminent':
return 'critical'
elif failure_prediction['risk_level'] == 'high':
return 'high'
elif failure_prediction['risk_level'] == 'medium':
return 'medium'
return 'low'
def _generate_alert_message(self, facility_analysis, health_analysis, failure_prediction, alert_level):
"""生成预警消息"""
messages = []
if facility_analysis['facility_analysis']['fires'] > 0:
messages.append(f"Fire detected at power grid facility")
if facility_analysis['facility_analysis']['smoke'] > 0:
messages.append(f"Smoke detected at power grid facility")
if facility_analysis['facility_analysis']['damaged_equipment'] > 0:
messages.append(f"{facility_analysis['facility_analysis']['damaged_equipment']} damaged equipment items detected")
if facility_analysis['facility_analysis']['foreign_objects'] > 0:
messages.append(f"{facility_analysis['facility_analysis']['foreign_objects']} foreign objects detected")
if health_analysis['health_level'] in ['poor', 'critical']:
messages.append(f"Equipment health is {health_analysis['health_level']} (score: {health_analysis['health_score']:.2f})")
if failure_prediction['risk_level'] in ['imminent', 'high']:
messages.append(f"High risk of equipment failure predicted within {failure_prediction['time_to_failure']}")
if not messages:
messages.append("Routine inspection completed - no issues detected")
return '; '.join(messages)
def process_alerts(self):
"""处理预警信息"""
processed_alerts = []
for alert in self.alerts:
if alert['status'] == 'new':
# 处理预警
self._process_alert(alert)
alert['status'] = 'processed'
processed_alerts.append(alert)
return processed_alerts
def _process_alert(self, alert):
"""处理单个预警"""
alert_level = alert['level']
# 根据预警级别执行不同的操作
if alert_level == 'critical':
# 执行紧急操作,如切断电源、启动消防系统等
self._execute_emergency_actions(alert)
elif alert_level == 'high':
# 执行高优先级操作,如调度维修人员等
self._execute_high_priority_actions(alert)
elif alert_level == 'medium':
# 执行中等优先级操作,如安排维修计划等
self._execute_medium_priority_actions(alert)
# 记录预警处理
print(f"Processed alert: {alert['alert_id']} (Level: {alert_level})")
def _execute_emergency_actions(self, alert):
"""执行紧急操作"""
# 实际应用中,这里应该与电网管理系统集成,执行具体的紧急操作
print("Executing emergency actions...")
print(f"Alert message: {alert['message']}")
# 示例操作:
# 1. 切断受影响区域的电源
# 2. 启动消防系统
# 3. 通知应急响应团队
# 4. 向电网调度中心发送故障信息
def _execute_high_priority_actions(self, alert):
"""执行高优先级操作"""
print("Executing high priority actions...")
print(f"Alert message: {alert['message']}")
# 示例操作:
# 1. 调度维修人员
# 2. 准备维修材料
# 3. 制定维修计划
def _execute_medium_priority_actions(self, alert):
"""执行中等优先级操作"""
print("Executing medium priority actions...")
print(f"Alert message: {alert['message']}")
# 示例操作:
# 1. 安排定期检查
# 2. 更新维护计划
# 3. 监控设备状态
def integrate_with_grid_management_system(self, alert):
"""与电网管理系统集成"""
# 实际应用中,这里应该实现与电网管理系统的API集成
integration_data = {
'alert_id': alert['alert_id'],
'timestamp': alert['timestamp'],
'level': alert['level'],
'message': alert['message'],
'facility_analysis': alert['facility_analysis'],
'health_analysis': alert['health_analysis'],
'failure_prediction': alert['failure_prediction']
}
# 示例:发送数据到电网管理系统
print("Integrating with grid management system...")
print(json.dumps(integration_data, indent=2)[:500] + "...")
return integration_data
# 示例用法
alert_manager = AlertManager()
# 生成预警
alert = alert_manager.generate_alert(facility_analysis, health_analysis, failure_prediction)
print(f"Generated alert: {alert['alert_id']}")
print(f"Alert level: {alert['level']}")
print(f"Alert message: {alert['message']}")
# 处理预警
processed_alerts = alert_manager.process_alerts()
print(f"Processed {len(processed_alerts)} alerts")
# 与电网管理系统集成
integration_data = alert_manager.integrate_with_grid_management_system(alert)
print("Integration with grid management system completed")
3. 模型训练与评估
3.1 模型配置
代码实现:
from ultralytics import YOLO
# 模型配置
model = YOLO('yolov26n.pt') # 使用YOLOv26 nano版本
# 训练参数配置
train_config = {
'data': 'powergrid_dataset.yaml',
'epochs': 150,
'batch': 8,
'imgsz': 640,
'optimizer': 'AdamW',
'lr0': 0.001,
'weight_decay': 0.0005,
'workers': 4,
'device': '0', # 使用GPU
'project': 'powergrid_detection',
'name': 'yolov26n_powergrid'
}
# 开始训练
results = model.train(**train_config)
# 模型评估
metrics = model.val()
print(f"mAP@0.5: {metrics.box.map:.4f}")
print(f"mAP@0.5:0.95: {metrics.box.map5095:.4f}")
# 导出为ONNX格式
model.export(format='onnx', imgsz=640)
3.2 数据集配置
powergrid_dataset.yaml:
path: ./datasets/powergrid_dataset
train: images/train
val: images/val
test: images/test
names:
0: transformer
1: circuit_breaker
2: insulator
3: transmission_line
4: tower
5: switchgear
6: damaged_equipment
7: foreign_object
8: fire
9: smoke
10: person
11: animal
4. 部署与集成
4.1 边缘部署
代码实现:
import cv2
import numpy as np
import onnxruntime as ort
class EdgeDetector:
def __init__(self, model_path):
self.session = ort.InferenceSession(model_path)
self.input_name = self.session.get_inputs()[0].name
self.output_names = [output.name for output in self.session.get_outputs()]
self.class_names = {
0: 'transformer',
1: 'circuit_breaker',
2: 'insulator',
3: 'transmission_line',
4: 'tower',
5: 'switchgear',
6: 'damaged_equipment',
7: 'foreign_object',
8: 'fire',
9: 'smoke',
10: 'person',
11: 'animal'
}
def preprocess(self, image):
"""预处理图像"""
# 调整图像大小
image = cv2.resize(image, (640, 640))
# 转换为RGB
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# 归一化
image = image / 255.0
# 调整维度
image = np.transpose(image, (2, 0, 1))
image = np.expand_dims(image, axis=0)
# 转换为float32
image = image.astype(np.float32)
return image
def postprocess(self, outputs, image_shape, conf_threshold=0.5):
"""后处理模型输出"""
detections = []
# 注意:具体处理方式取决于模型输出格式
# 这里仅作为示例
return detections
def detect(self, image):
"""执行检测"""
# 预处理
input_tensor = self.preprocess(image)
# 推理
outputs = self.session.run(self.output_names, {self.input_name: input_tensor})
# 后处理
detections = self.postprocess(outputs, image.shape)
return detections
# 示例用法(在NVIDIA Jetson上部署)
detector = EdgeDetector('yolov26n_powergrid.onnx')
# 处理摄像头采集的图像
cap = cv2.VideoCapture(0) # 假设0是电网摄像头
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# 检测目标
detections = detector.detect(frame)
# 可视化结果
for detection in detections:
bbox = detection['bbox']
class_name = detection['class']
confidence = detection['confidence']
# 根据类别设置颜色
color = self._get_class_color(class_name)
cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), color, 2)
cv2.putText(frame, f"{class_name}: {confidence:.2f}", (int(bbox[0]), int(bbox[1])-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
cv2.imshow('Power Grid Detection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
4.2 系统集成
代码实现:
class PowerGridMonitoringSystem:
def __init__(self, config):
self.config = config
self.data_collector_manager = DataCollectorManager(config)
self.detector = PowerGridDetector(config.get('model_path', 'yolov26n_powergrid.pt'))
self.analyzer = PowerGridAnalyzer()
self.alert_manager = AlertManager(config.get('alert_config', {}))
def start(self):
"""启动系统"""
print("Starting Power Grid Monitoring System...")
self.data_collector_manager.start_collection()
print("System started")
def stop(self):
"""停止系统"""
print("Stopping Power Grid Monitoring System...")
self.data_collector_manager.stop_collection()
print("System stopped")
async def run_uav_inspection(self, facility_coords, image_save_dir):
"""运行无人机巡检"""
return await self.data_collector_manager.run_uav_inspection(facility_coords, image_save_dir)
def process_data(self):
"""处理采集的数据"""
# 获取采集的数据
data = self.data_collector_manager.data_storage
results = []
for frame_data in data:
# 处理单帧数据
result = self._process_frame(frame_data)
if result:
results.append(result)
return results
def _process_frame(self, frame_data):
"""处理单帧数据"""
frame = frame_data['frame']
timestamp = frame_data['timestamp']
source = frame_data['source']
# 检测目标
detections = self.detector.detect(frame)
# 分析设施状况
facility_analysis = self.detector.analyze_facility(detections)
# 分析健康状况
health_analysis = self.analyzer.analyze_equipment_health(facility_analysis)
# 预测故障风险
failure_prediction = self.analyzer.predict_failure_risk(facility_analysis)
# 生成预警
alert = self.alert_manager.generate_alert(facility_analysis, health_analysis, failure_prediction)
# 生成维护计划
maintenance_plan = self.analyzer.generate_maintenance_plan(facility_analysis, health_analysis, failure_prediction)
result = {
'timestamp': timestamp,
'source': source,
'detections': detections,
'facility_analysis': facility_analysis,
'health_analysis': health_analysis,
'failure_prediction': failure_prediction,
'alert': alert,
'maintenance_plan': maintenance_plan
}
return result
def generate_report(self, results):
"""生成报告"""
if not results:
return None
# 汇总结果
summary = self._summarize_results(results)
report = {
'timestamp': datetime.now().isoformat(),
'report_id': f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
'summary': summary,
'detailed_results': results
}
return report
def _summarize_results(self, results):
"""汇总结果"""
summary = {
'total_frames': len(results),
'total_detections': 0,
'damaged_equipment_count': 0,
'foreign_objects_count': 0,
'fires_count': 0,
'smoke_count': 0,
'people_count': 0,
'animals_count': 0,
'average_health_score': 0,
'alert_count': 0,
'alert_levels': {}
}
health_scores = []
for result in results:
# 统计检测结果
summary['total_detections'] += len(result['detections'])
summary['damaged_equipment_count'] += result['facility_analysis']['facility_analysis']['damaged_equipment']
summary['foreign_objects_count'] += result['facility_analysis']['facility_analysis']['foreign_objects']
summary['fires_count'] += result['facility_analysis']['facility_analysis']['fires']
summary['smoke_count'] += result['facility_analysis']['facility_analysis']['smoke']
summary['people_count'] += result['facility_analysis']['facility_analysis']['people']
summary['animals_count'] += result['facility_analysis']['facility_analysis']['animals']
# 统计健康评分
health_scores.append(result['health_analysis']['health_score'])
# 统计预警
summary['alert_count'] += 1
alert_level = result['alert']['level']
if alert_level not in summary['alert_levels']:
summary['alert_levels'][alert_level] = 0
summary['alert_levels'][alert_level] += 1
# 计算平均健康评分
if health_scores:
summary['average_health_score'] = sum(health_scores) / len(health_scores)
return summary
# 示例用法
config = {
'model_path': 'yolov26n_powergrid.pt',
'cameras': {
'substation': {'index': 0, 'width': 1280, 'height': 720},
'transmission_tower': {'index': 1, 'width': 1280, 'height': 720},
'transformer': {'index': 2, 'width': 1280, 'height': 720}
}
}
system = PowerGridMonitoringSystem(config)
system.start()
# 运行10秒后处理数据
time.sleep(10)
results = system.process_data()
# 生成报告
report = system.generate_report(results)
if report:
print(f"Generated report: {report['report_id']}")
print(f"Total frames processed: {report['summary']['total_frames']}")
print(f"Average health score: {report['summary']['average_health_score']:.2f}")
print(f"Alert count: {report['summary']['alert_count']}")
print(f"Alert levels: {report['summary']['alert_levels']}")
# 停止系统
system.stop()
5. 系统评估与优化
5.1 性能评估
代码实现:
def evaluate_model(model_path, test_dataset):
model = YOLO(model_path)
metrics = model.val(data=test_dataset)
evaluation_results = {
'mAP@0.5': metrics.box.map,
'mAP@0.5:0.95': metrics.box.map5095,
'precision': metrics.box.precision.mean().item(),
'recall': metrics.box.recall.mean().item()
}
return evaluation_results
# 评估模型
eval_results = evaluate_model('yolov26n_powergrid.pt', 'powergrid_dataset.yaml')
print("Model evaluation results:")
print(f"mAP@0.5: {eval_results['mAP@0.5']:.4f}")
print(f"mAP@0.5:0.95: {eval_results['mAP@0.5:0.95']:.4f}")
print(f"Precision: {eval_results['precision']:.4f}")
print(f"Recall: {eval_results['recall']:.4f}")
# 性能测试
def test_performance(detector, test_images):
import time
times = []
for image_path in test_images:
image = cv2.imread(image_path)
if image is None:
continue
start_time = time.time()
detections = detector.detect(image)
end_time = time.time()
times.append(end_time - start_time)
avg_time = sum(times) / len(times) if times else 0
fps = 1 / avg_time if avg_time > 0 else 0
return {
'average_inference_time': avg_time,
'fps': fps,
'test_images_count': len(test_images)
}
# 测试性能
test_images = [f'data/test_images/image_{i}.jpg' for i in range(10)]
detector = PowerGridDetector('yolov26n_powergrid.pt')
perf_results = test_performance(detector, test_images)
print("Performance test results:")
print(f"Average inference time: {perf_results['average_inference_time']:.4f} seconds")
print(f"FPS: {perf_results['fps']:.2f}")
print(f"Tested on {perf_results['test_images_count']} images")
5.2 优化策略
-
模型优化
- 使用模型量化减少模型大小和推理时间
- 针对电网设施的特殊场景进行模型微调
- 采用知识蒸馏提升小型模型性能
-
数据优化
- 增加电网设施数据的多样性,包括不同类型的设备、天气条件和光线条件
- 使用合成数据扩充训练集
- 采用主动学习选择难例进行标注
-
系统优化
- 实现多线程处理提高数据采集和处理速度
- 优化无人机飞行路径,减少飞行时间和电池消耗
- 使用边缘计算减少数据传输延迟
- 实现增量学习,使模型能够适应新的电网设施和环境
-
算法优化
- 改进目标检测算法,提高小目标检测准确率
- 开发更精确的设备健康评估算法
- 优化故障预测模型,提高预测准确性
-
硬件优化
- 选择适合电网环境的摄像头和传感器
- 优化传感器配置,提高数据采集质量
- 增加无人机电池容量,延长飞行时间
6. 应用场景与案例
6.1 应用场景
-
变电站监测
- 监测变电站内设备的运行状态
- 检测设备异常和安全隐患
- 确保变电站的安全运行
-
输电线路监测
- 监测输电线路的完整性
- 检测线路上的异物和损坏
- 预防线路故障和跳闸
-
配电设备监测
- 监测配电设备的运行状态
- 检测设备异常和安全隐患
- 提高配电系统的可靠性
-
新能源接入监测
- 监测新能源接入点的设备状态
- 确保新能源的安全接入
- 优化新能源的并网管理
-
电网应急响应
- 在自然灾害后快速评估电网设施受损情况
- 指导应急抢修工作
- 加速电网恢复供电
6.2 案例分析
案例:某电网公司智能电网设施监测系统应用
-
背景:该电网公司负责管理覆盖1000平方公里的电网设施,包括20座变电站和500公里输电线路,传统人工巡检效率低下,难以及时发现设备异常。
-
解决方案:部署基于YOLOv26的智能电网设施监测系统,在变电站安装固定摄像头,定期使用无人机巡检输电线路,实时监测电网设施状态。
-
实施效果:
- 巡检效率提高90%(从人工巡检需要2周减少到系统巡检仅需2天)
- 设备故障发现时间提前7-10天,减少故障损失60%
- 运维成本降低40%
- 电网供电可靠性提高到99.99%
- 减少人工巡检的安全风险
-
技术要点:
- 使用YOLOv26n模型在边缘设备上实现实时检测
- 结合红外热成像技术提高设备异常检测准确率
- 实现无人机自动巡检输电线路
- 与电网调度系统集成,实现数据共享和分析
7. 总结与展望
7.1 系统总结
本系统基于YOLOv26实现了智能电网设施监测的自动化和智能化,主要功能包括:
- 自动监测:通过固定摄像头和无人机自动监测电网设施状态
- 精准检测:使用YOLOv26检测电网设施的异常状态和潜在风险
- 智能分析:基于检测结果分析设施健康状况并预测故障风险
- 及时预警:根据分析结果生成预警信息并执行相应的操作
- 决策支持:生成详细的维护计划,为电网运维提供科学依据
- 边缘部署:在资源受限的设备上实现实时处理
系统采用模块化设计,具有良好的可扩展性和可维护性,可根据不同电网场景进行定制化调整。
7.2 未来展望
-
技术发展
- 探索使用更先进的YOLO系列模型提高检测精度和速度
- 集成深度学习和传统电力系统知识,提高分析和决策的准确性
- 开发多模态融合模型,整合可见光、红外和热成像数据
- 实现实时语义分割,获取更详细的电网设施信息
-
应用扩展
- 将系统扩展到更多类型的电网设施和场景
- 与气象预测系统集成,实现更精准的电网风险评估
- 开发基于区块链的电网数据共享平台,促进电网大数据应用
- 与智能电网设备集成,实现自动化电网管理
-
产业影响
- 推动智能电网的发展,提高电网运行效率和可靠性
- 促进电网运维的数字化转型,降低运维成本
- 提高电网应对自然灾害的能力,减少故障损失
- 为新能源的安全接入和管理提供技术支持
-
社会影响
- 提高电力供应的稳定性和可靠性,保障社会经济发展
- 减少电网故障导致的停电事故,提高人民生活质量
- 降低电网运维的安全风险,保障运维人员的生命安全
- 促进能源的高效利用,支持可持续发展
通过不断的技术创新和应用推广,基于YOLOv26的智能电网设施监测系统有望在未来成为智能电网的核心技术之一,为全球电网的安全、可靠和高效运行做出贡献。
DAMO开发者矩阵,由阿里巴巴达摩院和中国互联网协会联合发起,致力于探讨最前沿的技术趋势与应用成果,搭建高质量的交流与分享平台,推动技术创新与产业应用链接,围绕“人工智能与新型计算”构建开放共享的开发者生态。
更多推荐

所有评论(0)