群体稳定性指标(population stability index)

 

由于模型是以特定时期的样本所开发的,此模型是否适用于开发样本之外的族群,必须经过稳定性测试才能得知。稳定度指标(population stability index ,PSI)可衡量测试样本及模型开发样本评分的的分布差异,为最常见的模型稳定度评估指针。其实PSI表示的就是按分数分档后,针对不同样本,或者不同时间的样本,population分布是否有变化,就是看各个分数区间内人数占总人数的占比是否有显著变化。通常用作模型效果监测。一般认为PSI小于0.1时候模型稳定性很高,0.1-0.2一般,需要进一步研究,大于0.2模型稳定性差,建议修复。

公式如下:

这里的AC与EX为不同时间段的模型输出分数,如果PSI过大,说明模型输出的分数分布变化很大了,需要更新模型。 

 

PSI实际应用范例:

1)样本外测试

  针对不同的样本测试一下模型稳定度,比如训练集与测试集,也能看出模型的训练情况,我理解是看出模型的方差情况。

2)时间外测试

  测试基准日与建模基准日相隔越远,测试样本的风险特征和建模样本的差异可能就越大,因此PSI值通常较高。至此也可以看出模型建的时间太长了,是不是需要重新用新样本建模了。

 

变量的PSI计算:

PSI:检验变量的稳定性,当一个变量的psi值大于0.0001时,变量不稳定。一个变量,将它的取值按照分位数来分组一下,每一组中测试模型的客户数占比减去训练模型中的客户数占比再乘以这两者相除的对数,就是这一组的稳定性系数psi,然后变量的psi系数就是把这个变量的所有组的psi相加总起来。

Logo

DAMO开发者矩阵,由阿里巴巴达摩院和中国互联网协会联合发起,致力于探讨最前沿的技术趋势与应用成果,搭建高质量的交流与分享平台,推动技术创新与产业应用链接,围绕“人工智能与新型计算”构建开放共享的开发者生态。

更多推荐