机器学习中常用的模型性能评估指标,来源于维基百科

 

 

 

condition positive (P)

the number of real positive cases in the data

condition negative (N)

the number of real negative cases in the data


true positive (TP)

eqv. with hit

true negative (TN)

eqv. with correct rejection

false positive (FP)

eqv. with false alarmType I error

false negative (FN)

eqv. with miss, Type II error


sensitivityrecallhit rate, or true positive rate (TPR)

{\displaystyle \mathrm {TPR} ={\frac {\mathrm {TP} }{P}}={\frac {\mathrm {TP} }{\mathrm {TP} +\mathrm {FN} }}}

specificity or true negative rate (TNR)

{\displaystyle \mathrm {TNR} ={\frac {\mathrm {TN} }{N}}={\frac {\mathrm {TN} }{\mathrm {TN} +\mathrm {FP} }}}

precision or positive predictive value (PPV)

{\displaystyle \mathrm {PPV} ={\frac {\mathrm {TP} }{\mathrm {TP} +\mathrm {FP} }}}

negative predictive value (NPV)

{\displaystyle \mathrm {NPV} ={\frac {\mathrm {TN} }{\mathrm {TN} +\mathrm {FN} }}}

miss rate or false negative rate (FNR)

{\displaystyle \mathrm {FNR} ={\frac {\mathrm {FN} }{P}}={\frac {\mathrm {FN} }{\mathrm {FN} +\mathrm {TP} }}=1-\mathrm {TPR} }

fall-out or false positive rate (FPR)

{\displaystyle \mathrm {FPR} ={\frac {\mathrm {FP} }{N}}={\frac {\mathrm {FP} }{\mathrm {FP} +\mathrm {TN} }}=1-\mathrm {TNR} }

false discovery rate (FDR)

{\displaystyle \mathrm {FDR} ={\frac {\mathrm {FP} }{\mathrm {FP} +\mathrm {TP} }}=1-\mathrm {PPV} }

false omission rate (FOR)

{\displaystyle \mathrm {FOR} ={\frac {\mathrm {FN} }{\mathrm {FN} +\mathrm {TN} }}=1-\mathrm {NPV} }

accuracy (ACC)

{\displaystyle \mathrm {ACC} ={\frac {\mathrm {TP} +\mathrm {TN} }{P+N}}={\frac {\mathrm {TP} +\mathrm {TN} }{\mathrm {TP} +\mathrm {TN} +\mathrm {FP} +\mathrm {FN} }}}


F1 score

is the harmonic mean of precision and sensitivity

{\displaystyle F_{1}=2\cdot {\frac {\mathrm {PPV} \cdot \mathrm {TPR} }{\mathrm {PPV} +\mathrm {TPR} }}={\frac {2\mathrm {TP} }{2\mathrm {TP} +\mathrm {FP} +\mathrm {FN} }}}

Matthews correlation coefficient (MCC)

{\displaystyle \mathrm {MCC} ={\frac {\mathrm {TP} \times \mathrm {TN} -\mathrm {FP} \times \mathrm {FN} }{\sqrt {(\mathrm {TP} +\mathrm {FP} )(\mathrm {TP} +\mathrm {FN} )(\mathrm {TN} +\mathrm {FP} )(\mathrm {TN} +\mathrm {FN} )}}}}

Informedness or Bookmaker Informedness (BM)

{\displaystyle \mathrm {BM} =\mathrm {TPR} +\mathrm {TNR} -1}

Markedness (MK)

{\displaystyle \mathrm {MK} =\mathrm {PPV} +\mathrm {NPV} -1}

 

 

 

 

 

混淆矩阵的表示方法如下图:

Logo

DAMO开发者矩阵,由阿里巴巴达摩院和中国互联网协会联合发起,致力于探讨最前沿的技术趋势与应用成果,搭建高质量的交流与分享平台,推动技术创新与产业应用链接,围绕“人工智能与新型计算”构建开放共享的开发者生态。

更多推荐