PyTorch深度学习实践——处理多维特征的输入
面对多维输入的数据时:根据数据集构造从多维到一维的计算图:import numpy as npimport torchimport matplotlib.pyplot as plt#Prepare datasetxy = np.loadtxt(r'C:\Users\22843\pythonProject3\data\diabetes.csv.gz',delimiter=',',dtype=np.f
·
面对多维输入的数据时:
根据数据集构造从多维到一维的计算图:
import numpy as np
import torch
import matplotlib.pyplot as plt
#Prepare dataset
xy = np.loadtxt(r'C:\Users\22843\pythonProject3\data\diabetes.csv.gz',delimiter=',',dtype=np.float32)
x_data = torch.from_numpy(xy[:,:-1]) #第一个‘:’是指读取所有行,第二个‘:’是指从第一列开始,
y_data = torch.from_numpy(xy[:,[-1]]) #[-1]得到的是矩阵
#design model using class
class Model(torch.nn.Module):
def __init__(self):
super(Model,self).__init__()
self.linear1 = torch.nn.Linear(8,6)
self.linear2 = torch.nn.Linear(6,4)
self.linear3 = torch.nn.Linear(4,1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self,x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x))
return x
model = Model()
#Construct loss and optimizer
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(),lr=0.1)
epoch_list = []
loss_list = []
#Trainnig cycle forward,backward,update
for epoch in range(100):
#forward
y_pred = model(x_data)
loss = criterion(y_pred,y_data)
print(epoch,loss.item())
epoch_list.append(epoch)
loss_list.append(loss.item())
#backward
optimizer.zero_grad()
loss.backward()
#update
optimizer.step()
plt.plot(epoch_list,loss_list)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.show()

DAMO开发者矩阵,由阿里巴巴达摩院和中国互联网协会联合发起,致力于探讨最前沿的技术趋势与应用成果,搭建高质量的交流与分享平台,推动技术创新与产业应用链接,围绕“人工智能与新型计算”构建开放共享的开发者生态。
更多推荐


所有评论(0)