258-基于Python的arXiv论文数据分析系统:从爬取到可视化的完整实践
本文介绍了一个基于Python的arXiv论文数据分析系统,该系统实现了论文爬取、存储、分析和可视化的完整流程。系统采用Python(arxiv库、Flask)作为后端,Vue3+ECharts构建前端可视化界面,利用GitHub Actions实现自动化更新。核心功能包括:通过arxiv API爬取最新论文数据,使用TF-IDF向量化和LDA模型提取关键词,构建论文关联网络图,并实现时间序列分析
基于Python的arXiv论文数据分析系统:从爬取到可视化的完整实践
本文将详细介绍如何用Python打造一个自动化的arXiv论文数据分析系统,实现论文爬取、数据存储、Web可视化和自动更新。
🎬 项目演示视频:B站完整功能演示
1. 项目背景
学术论文的爆炸式增长让研究者很难及时掌握最新进展。arXiv作为全球最大的预印本论文平台,涵盖了AI、CV、NLP等众多领域。手动检索和整理论文效率低下,因此我决定用Python实现一个自动化的arXiv论文数据分析系统。
2. 技术选型
- 后端爬虫与API:Python(arxiv、requests、pyyaml、Flask)
- 数据存储:JSON文件(轻量,便于前后端共享)
- 前端可视化:Vue3 + ECharts(趋势图、统计面板等)
- 自动化:GitHub Actions(定时任务、自动推送)
- 数据分析:scikit-learn、networkx、statsmodels
3. 核心实现








3.1 论文爬虫实现
import arxiv
import requests
import yaml
import json
import logging
def get_daily_papers(topic, query="slam", max_results=2):
"""爬取arXiv论文的核心函数"""
content = dict()
content_to_web = dict()
# 使用arxiv库进行搜索
search_engine = arxiv.Search(
query=query,
max_results=max_results,
sort_by=arxiv.SortCriterion.SubmittedDate
)
for result in search_engine.results():
paper_id = result.get_short_id()
paper_title = result.title
paper_url = result.entry_id
paper_abstract = result.summary.replace("\n", " ")
paper_authors = get_authors(result.authors)
paper_first_author = get_authors(result.authors, first_author=True)
publish_time = result.published.date()
update_time = result.updated.date()
# 处理arXiv ID版本号
ver_pos = paper_id.find('v')
if ver_pos == -1:
paper_key = paper_id
else:
paper_key = paper_id[0:ver_pos]
paper_url = f"http://arxiv.org/abs/{paper_key}"
try:
# 获取代码链接
code_url = f"https://arxiv.paperswithcode.com/api/v0/papers/{paper_key}"
r = requests.get(code_url).json()
repo_url = None
if "official" in r and r["official"]:
repo_url = r["official"]["url"]
# 构建数据格式
if repo_url is not None:
content[paper_key] = "|**{}**|**{}**|{} et.al.|[{}]({})|**[link]({})**|\n".format(
update_time, paper_title, paper_first_author, paper_key, paper_url, repo_url)
else:
content[paper_key] = "|**{}**|**{}**|{} et.al.|[{}]({})|null|\n".format(
update_time, paper_title, paper_first_author, paper_key, paper_url)
except Exception as e:
logging.error(f"exception: {e} with id: {paper_key}")
data = {topic: content}
return data
def get_authors(authors, first_author=False):
"""处理作者信息"""
if first_author:
return str(authors[0])
return ", ".join(str(author) for author in authors)
3.2 数据分析模块
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import LatentDirichletAllocation
import networkx as nx
import pandas as pd
import numpy as np
from statsmodels.tsa.arima.model import ARIMA
def extract_keywords(json_file, top_n=30):
"""从论文数据中提取关键词"""
with open(json_file, 'r', encoding='utf-8') as f:
papers_data = json.load(f)
# 提取论文标题
texts = []
for category in papers_data:
for paper_id, paper_info in papers_data[category].items():
match = re.search(r'\|\*\*(.*?)\*\*\|\*\*(.*?)\*\*\|', paper_info)
if match:
title = match.group(2)
texts.append(title)
# 自定义停用词
custom_stop_words = set(['2020', '2021', '2022', '2023', '2024'])
for year in range(1990, 2025):
custom_stop_words.add(str(year))
# TF-IDF向量化
vectorizer = TfidfVectorizer(
max_features=200,
stop_words=list(custom_stop_words),
token_pattern=r'(?u)\b[a-zA-Z][a-zA-Z-]+[a-zA-Z]\b',
ngram_range=(1, 3),
min_df=2
)
tfidf_matrix = vectorizer.fit_transform(texts)
feature_names = vectorizer.get_feature_names_out()
keyword_scores = np.sum(tfidf_matrix.toarray(), axis=0)
# 过滤有效关键词
valid_indices = []
for i, word in enumerate(feature_names):
if (word not in custom_stop_words and
not word.isdigit() and
len(word) >= 3):
valid_indices.append(i)
valid_scores = [(feature_names[i], float(keyword_scores[i] * 1.5))
for i in valid_indices]
valid_scores.sort(key=lambda x: x[1], reverse=True)
return valid_scores[:top_n]
def topic_modeling(json_file, num_topics=5, num_words=10):
"""使用LDA进行主题建模"""
with open(json_file, 'r') as f:
papers_data = json.load(f)
# 提取论文标题
texts = []
for category in papers_data:
for paper_id, paper_info in papers_data[category].items():
match = re.search(r'\|\*\*(.*?)\*\*\|\*\*(.*?)\*\*\|', paper_info)
if match:
title = match.group(2)
texts.append(title)
# 自定义停用词
custom_stop_words = set(['2020', '2021', '2022', '2023', '2024'])
for year in range(1990, 2025):
custom_stop_words.add(str(year))
# CountVectorizer准备数据
vectorizer = CountVectorizer(
max_features=1000,
stop_words=list(custom_stop_words),
token_pattern=r'(?u)\b[a-zA-Z][a-zA-Z-]+[a-zA-Z]\b',
ngram_range=(1, 3),
min_df=2
)
X = vectorizer.fit_transform(texts)
# 应用LDA
lda = LatentDirichletAllocation(
n_components=num_topics,
random_state=42,
learning_method='online'
)
lda.fit(X)
# 提取主题关键词
feature_names = vectorizer.get_feature_names_out()
topics = []
for topic_idx, topic in enumerate(lda.components_):
top_words_idx = topic.argsort()[:-num_words-1:-1]
filtered_words = []
for i in top_words_idx:
word = feature_names[i]
if (word not in custom_stop_words and
not word.isdigit() and
len(word) >= 3):
filtered_words.append(word)
topics.append(filtered_words[:num_words])
return topics
def time_series_analysis(json_file):
"""分析论文发布的时间趋势"""
with open(json_file, 'r') as f:
papers_data = json.load(f)
# 提取发布日期
dates = []
for category in papers_data:
for paper_id, paper_info in papers_data[category].items():
match = re.search(r'\|\*\*(.*?)\*\*\|', paper_info)
if match:
try:
date_str = match.group(1)
date = datetime.strptime(date_str, '%Y-%m-%d')
dates.append(date)
except:
continue
# 创建时间序列
date_counts = pd.Series([1] * len(dates), index=dates)
date_counts = date_counts.resample('D').sum().fillna(0)
# ARIMA时间序列预测
if len(date_counts) > 10:
model = ARIMA(date_counts, order=(5,1,0))
model_fit = model.fit()
forecast = model_fit.forecast(steps=7)
else:
forecast = None
return {
'time_series': date_counts,
'forecast': forecast
}
3.3 Flask后端API实现
from flask import Flask, jsonify, request
from flask_cors import CORS
import json
import os
import re
app = Flask(__name__)
CORS(app)
@app.route('/api/papers', methods=['GET'])
def get_papers():
try:
# 获取分页参数
page = request.args.get('page', 1, type=int)
per_page = request.args.get('per_page', 12, type=int)
category = request.args.get('category', '')
search = request.args.get('search', '')
# 验证参数
if page < 1:
page = 1
if per_page < 1 or per_page > 100:
per_page = 12
# 加载JSON数据
with open(JSON_FILE, 'r') as f:
papers = json.load(f)
# 处理论文数据
all_papers = []
for cat, papers_dict in papers.items():
if category and cat != category:
continue
for paper_id, paper_info in papers_dict.items():
# 解析论文信息
parts = paper_info.split('|')
if len(parts) >= 5:
date = parts[1].replace('**', '') if len(parts) > 1 else ''
title = parts[2].replace('**', '') if len(parts) > 2 else ''
authors = parts[3] if len(parts) > 3 else ''
# 解析PDF链接
pdf_link_raw = parts[4] if len(parts) > 4 else ''
pdf_link = ''
if pdf_link_raw and pdf_link_raw != 'null':
if '](http://arxiv.org/abs/' in pdf_link_raw:
pdf_link = pdf_link_raw.split('](http://arxiv.org/abs/')[1].split(')')[0]
pdf_link = f'http://arxiv.org/abs/{pdf_link}'
elif pdf_link_raw.startswith('http'):
pdf_link = pdf_link_raw
# 解析代码链接
code_link_raw = parts[5] if len(parts) > 5 else ''
code_link = ''
if code_link_raw and code_link_raw != 'null':
if '](https://github.com/' in code_link_raw:
code_link = code_link_raw.split('](https://github.com/')[1].split(')')[0]
code_link = f'https://github.com/{code_link}'
elif code_link_raw.startswith('http'):
code_link = code_link_raw
# 搜索过滤
if search and search.lower() not in title.lower():
continue
all_papers.append({
'id': paper_id,
'category': cat,
'date': date,
'title': title,
'authors': authors,
'pdf_link': pdf_link,
'code_link': code_link
})
# 按日期排序
all_papers.sort(key=lambda x: x['date'], reverse=True)
# 计算分页
total = len(all_papers)
start_idx = (page - 1) * per_page
end_idx = start_idx + per_page
papers_page = all_papers[start_idx:end_idx]
total_pages = (total + per_page - 1) // per_page
return jsonify({
'papers': papers_page,
'pagination': {
'page': page,
'per_page': per_page,
'total': total,
'total_pages': total_pages,
'has_next': page < total_pages,
'has_prev': page > 1
},
'categories': list(papers.keys())
})
except Exception as e:
print(f"获取论文列表时出错: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/api/keywords', methods=['GET'])
def get_keywords():
try:
keywords = extract_keywords(JSON_FILE)
return jsonify({
'keywords': [{'word': k, 'weight': float(w)} for k, w in keywords]
})
except Exception as e:
print(f"获取关键词时出错: {str(e)}")
return jsonify({'error': str(e), 'keywords': []}), 500
@app.route('/api/time-series', methods=['GET'])
def get_time_series():
try:
time_data = time_series_analysis(JSON_FILE)
return jsonify({
'time_series': {
'index': [str(d.date()) for d in time_data['time_series'].index],
'values': time_data['time_series'].tolist()
},
'forecast': {
'index': [str(d.date()) for d in time_data['forecast'].index] if time_data['forecast'] is not None else [],
'values': time_data['forecast'].tolist() if time_data['forecast'] is not None else []
}
})
except Exception as e:
print(f"获取时间序列时出错: {str(e)}")
return jsonify({
'error': str(e),
'time_series': {'index': [], 'values': []},
'forecast': {'index': [], 'values': []}
}), 500
3.4 Vue3前端组件实现
<!-- App.vue 主组件 -->
<template>
<div id="app">
<header>
<h1>学术论文分析平台</h1>
</header>
<div class="main-container">
<!-- 侧边导航栏 -->
<div class="sidebar">
<div
v-for="(tab, index) in tabs"
:key="index"
class="sidebar-tab"
:class="{ active: activeTab === index }"
@click="changeTab(index)"
>
<span class="tab-icon">{{ tab.icon }}</span>
<span class="tab-name">{{ tab.name }}</span>
</div>
</div>
<!-- 内容区域 -->
<main class="content-area">
<!-- 论文列表页 -->
<div v-if="activeTab === 4" class="tab-content">
<h2>最新论文列表</h2>
<div class="search-bar">
<input v-model="searchQuery" type="text" placeholder="输入关键词搜索..." @keyup.enter="searchPapers" />
<select v-model="selectedCategory" @change="searchPapers">
<option value="">所有类别</option>
<option v-for="category in categories" :key="category" :value="category">{{ category }}</option>
</select>
<button @click="searchPapers">搜索</button>
</div>
<div v-if="papersData.length > 0" class="paper-list">
<div v-for="paper in papersData" :key="paper.id" class="paper-card">
<h3>{{ paper.title }}</h3>
<p>作者: {{ paper.authors }}</p>
<p>发布日期: {{ paper.date }}</p>
<p>类别: {{ paper.category }}</p>
<div class="paper-links">
<a :href="paper.pdf_link" target="_blank">论文链接</a>
<a v-if="paper.code_link && paper.code_link !== 'null'" :href="paper.code_link" target="_blank">代码链接</a>
</div>
</div>
</div>
<!-- 分页控件 -->
<div v-if="pagination.total_pages > 1" class="pagination">
<button @click="changePage(pagination.page - 1)" :disabled="!pagination.has_prev">上一页</button>
<span class="page-info">第 {{ pagination.page }} 页,共 {{ pagination.total_pages }} 页</span>
<button @click="changePage(pagination.page + 1)" :disabled="!pagination.has_next">下一页</button>
</div>
</div>
</main>
</div>
</div>
</template>
<script>
import axios from 'axios';
export default {
name: 'App',
data() {
return {
tabs: [
{ name: '关键词分析', icon: '🔍' },
{ name: '主题分析', icon: '📊' },
{ name: '关键词趋势预测', icon: '📈' },
{ name: '时间趋势', icon: '📅' },
{ name: '论文列表', icon: '📚' }
],
activeTab: 4,
papersData: [],
pagination: {
page: 1,
per_page: 12,
total: 0,
total_pages: 0,
has_next: false,
has_prev: false
},
searchQuery: '',
selectedCategory: '',
categories: []
}
},
mounted() {
this.fetchData();
},
methods: {
async fetchData() {
try {
const response = await axios.get('/api/papers', {
params: {
page: this.pagination.page,
per_page: this.pagination.per_page,
category: this.selectedCategory,
search: this.searchQuery
}
});
this.papersData = response.data.papers;
this.pagination = response.data.pagination;
this.categories = response.data.categories;
} catch (error) {
console.error('获取数据失败:', error);
}
},
async changePage(newPage) {
this.pagination.page = newPage;
await this.fetchData();
},
async searchPapers() {
this.pagination.page = 1;
await this.fetchData();
},
changeTab(index) {
this.activeTab = index;
}
}
}
</script>
<!-- TimeSeriesAnalysis.vue 时间序列分析组件 -->
<template>
<div class="time-series">
<div class="chart-header">
<h2>📈 论文发布时间趋势分析</h2>
<p class="chart-description">基于历史数据分析研究趋势,帮助了解学术发展动态</p>
</div>
<div class="stats-panel" v-if="timeData">
<div class="stat-item">
<div class="stat-value">{{ getTotalPapers() }}</div>
<div class="stat-label">总论文数</div>
</div>
<div class="stat-item">
<div class="stat-value">{{ getAveragePapers() }}</div>
<div class="stat-label">月均发布</div>
</div>
<div class="stat-item">
<div class="stat-value">{{ getMaxPapers() }}</div>
<div class="stat-label">最高月发布</div>
</div>
<div class="stat-item">
<div class="stat-value">{{ getTrendDirection() }}</div>
<div class="stat-label">趋势方向</div>
</div>
</div>
<div ref="timeChart" class="time-chart"></div>
</div>
</template>
<script>
import * as echarts from 'echarts';
export default {
name: 'TimeSeriesAnalysis',
props: {
timeData: Object
},
data() {
return {
chart: null
}
},
mounted() {
this.initChart();
},
methods: {
getTotalPapers() {
if (!this.timeData || !this.timeData.time_series || !this.timeData.time_series.values) return 0;
return this.timeData.time_series.values.reduce((sum, val) => sum + val, 0);
},
getAveragePapers() {
if (!this.timeData || !this.timeData.time_series || !this.timeData.time_series.values) return 0;
const values = this.timeData.time_series.values;
const sum = values.reduce((sum, val) => sum + val, 0);
return Math.round(sum / values.length);
},
getMaxPapers() {
if (!this.timeData || !this.timeData.time_series || !this.timeData.time_series.values) return 0;
return Math.max(...this.timeData.time_series.values);
},
getTrendDirection() {
if (!this.timeData || !this.timeData.time_series || !this.timeData.time_series.values) return '未知';
const values = this.timeData.time_series.values;
if (values.length < 2) return '数据不足';
const recent = values.slice(-3);
const earlier = values.slice(-6, -3);
const recentAvg = recent.reduce((sum, val) => sum + val, 0) / recent.length;
const earlierAvg = earlier.reduce((sum, val) => sum + val, 0) / earlier.length;
if (recentAvg > earlierAvg * 1.1) return '📈 上升';
if (recentAvg < earlierAvg * 0.9) return '📉 下降';
return '➡️ 稳定';
},
initChart() {
if (!this.timeData) return;
this.chart = echarts.init(this.$refs.timeChart);
const dates = this.timeData.time_series.index;
const counts = this.timeData.time_series.values;
const option = {
animation: true,
animationDuration: 2000,
animationEasing: 'cubicOut',
title: {
text: '论文发布时间趋势分析',
left: 'center',
textStyle: {
fontSize: 20,
fontWeight: 'bold',
color: '#2d3436'
}
},
tooltip: {
trigger: 'axis',
backgroundColor: 'rgba(255, 255, 255, 0.95)',
borderColor: '#4ecdc4',
borderWidth: 2,
formatter: function(params) {
let result = `<div style="font-weight: bold; margin-bottom: 8px;">${params[0].axisValue}</div>`;
params.forEach(param => {
result += `<div style="display: flex; align-items: center; margin: 4px 0;">
<span style="display: inline-block; width: 12px; height: 12px; background: ${param.color}; border-radius: 50%; margin-right: 8px;"></span>
<span style="font-weight: 500;">${param.seriesName}:</span>
<span style="margin-left: 8px; font-weight: bold;">${param.value}</span>
</div>`;
});
return result;
}
},
xAxis: {
type: 'category',
data: dates,
axisLine: { lineStyle: { color: '#bdc3c7' } },
axisLabel: { color: '#636e72', fontSize: 12, rotate: 45 }
},
yAxis: {
type: 'value',
name: '论文数量',
axisLine: { lineStyle: { color: '#bdc3c7' } },
splitLine: { lineStyle: { color: '#ecf0f1', type: 'dashed' } }
},
series: [{
name: '历史发布量',
type: 'line',
data: counts.map((value, index) => ({ value, xAxis: index })),
smooth: true,
lineStyle: {
width: 4,
color: {
type: 'linear',
x: 0, y: 0, x2: 0, y2: 1,
colorStops: [
{ offset: 0, color: '#4ecdc4' },
{ offset: 1, color: '#44a08d' }
]
}
},
areaStyle: {
color: {
type: 'linear',
x: 0, y: 0, x2: 0, y2: 1,
colorStops: [
{ offset: 0, color: 'rgba(78, 205, 196, 0.3)' },
{ offset: 1, color: 'rgba(78, 205, 196, 0.05)' }
]
}
},
symbol: 'circle',
symbolSize: 8,
label: {
show: true,
position: 'top',
formatter: '{c}',
fontSize: 12,
color: '#2d3436',
fontWeight: 'bold'
}
}]
};
this.chart.setOption(option);
}
}
}
</script>
3.5 GitHub Actions自动化
# .github/workflows/cv-arxiv-daily.yml
name: Run Arxiv Papers Daily
on:
workflow_dispatch:
schedule:
- cron: "0 0/12 * * *" # 每12小时执行一次
env:
GITHUB_USER_NAME: Vincentqyw
GITHUB_USER_EMAIL: realcat@126.com
jobs:
build:
name: update
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Set up Python Env
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install arxiv requests pyyaml
- name: Run daily arxiv
run: |
python daily_arxiv.py
- name: Push new papers
uses: github-actions-x/commit@v2.9
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
commit-message: "Github Action Automatic Update CV Arxiv Papers"
files: README.md docs/cv-arxiv-daily.json docs/cv-arxiv-daily-web.json docs/index.md
rebase: 'true'
name: ${{ env.GITHUB_USER_NAME }}
email: ${{ env.GITHUB_USER_EMAIL }}
4. 部署与使用
4.1 本地开发环境
# 1. 克隆项目
git clone https://github.com/your-username/cv-arxiv-daily.git
cd cv-arxiv-daily
# 2. 安装Python依赖
pip install arxiv requests pyyaml flask flask-cors scikit-learn networkx statsmodels
# 3. 安装前端依赖
cd analysis/frontend
npm install
# 4. 启动后端
cd ../backend
python app.py
# 5. 启动前端
cd ../frontend
npm run serve
4.2 生产环境部署
# 使用Gunicorn部署Flask后端
pip install gunicorn
gunicorn -w 4 -b 0.0.0.0:5000 app:app
# 构建前端
cd analysis/frontend
npm run build
5. 技术亮点
- 模块化设计:爬虫、API、前端完全解耦
- 数据分析:TF-IDF关键词提取、LDA主题建模、ARIMA时间序列预测
- 自动化部署:GitHub Actions实现无人值守运行
- 响应式UI:Vue3 + ECharts提供现代化用户体验
- 性能优化:分页加载、缓存策略、错误处理
6. 项目总结
6.1 核心功能模块
6.1.1 关键词分析系统
系统使用TF-IDF算法从论文标题中提取关键词,并通过词云和排行榜形式展示:
def extract_keywords(json_file, top_n=30):
"""从论文数据中提取关键词"""
with open(json_file, 'r', encoding='utf-8') as f:
papers_data = json.load(f)
# 提取论文标题
texts = []
for category in papers_data:
for paper_id, paper_info in papers_data[category].items():
match = re.search(r'\|\*\*(.*?)\*\*\|\*\*(.*?)\*\*\|', paper_info)
if match:
title = match.group(2)
texts.append(title)
# 自定义停用词,保留计算机专业术语
custom_stop_words = set(['2020', '2021', '2022', '2023', '2024'])
for year in range(1990, 2025):
custom_stop_words.add(str(year))
# TF-IDF向量化,支持词组提取
vectorizer = TfidfVectorizer(
max_features=200,
stop_words=list(custom_stop_words),
token_pattern=r'(?u)\b[a-zA-Z][a-zA-Z-]+[a-zA-Z]\b',
ngram_range=(1, 3), # 提取1-3个词的词组
min_df=2
)
tfidf_matrix = vectorizer.fit_transform(texts)
feature_names = vectorizer.get_feature_names_out()
keyword_scores = np.sum(tfidf_matrix.toarray(), axis=0)
# 过滤有效关键词
valid_indices = []
for i, word in enumerate(feature_names):
if (word not in custom_stop_words and
not word.isdigit() and
len(word) >= 3):
valid_indices.append(i)
valid_scores = [(feature_names[i], float(keyword_scores[i] * 1.5))
for i in valid_indices]
valid_scores.sort(key=lambda x: x[1], reverse=True)
return valid_scores[:top_n]
前端关键词可视化组件:
<!-- KeywordAnalysis.vue -->
<template>
<div class="keyword-analysis">
<div ref="keywordCloud" class="keyword-cloud"></div>
<!-- 关键词排行表 -->
<div class="keyword-ranking">
<h3>关键词排行</h3>
<div class="ranking-table-container">
<table class="ranking-table">
<thead>
<tr>
<th>排名</th>
<th>关键词</th>
<th>权重</th>
</tr>
</thead>
<tbody>
<tr v-for="(keyword, index) in keywords" :key="index">
<td>{{ index + 1 }}</td>
<td>
<span
class="keyword-tag"
:style="{
backgroundColor: getCategoryColor(keyword.word),
fontSize: getTagSize(keyword.weight, index)
}"
>
{{ keyword.word }}
</span>
</td>
<td>{{ (keyword.weight).toFixed(2) }}</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</template>
<script>
export default {
methods: {
getCategoryColor(word) {
// 根据关键词确定类别颜色
const lowerWord = word.toLowerCase();
const categoryColors = {
'vision': '#4285F4', 'learning': '#0F9D58', 'detection': '#DB4437',
'neural': '#673AB7', 'image': '#FF9800', 'segmentation': '#00BCD4',
'recognition': '#E91E63', 'network': '#607D8B', 'deep': '#9C27B0',
'transformer': '#3F51B5', 'tracking': '#F44336', 'attention': '#009688'
};
for (const category in categoryColors) {
if (lowerWord.includes(category)) {
return categoryColors[category];
}
}
return '#757575';
},
getTagSize(weight, index) {
// 根据排名设置字体大小
if (index === 0) return '24px';
else if (index <= 2) return '22px';
else if (index <= 5) return '20px';
else if (index <= 10) return '18px';
else if (index <= 15) return '16px';
else return '14px';
}
}
}
</script>
6.1.2 主题建模分析
使用LDA(Latent Dirichlet Allocation)算法进行主题建模,自动发现研究主题:
def topic_modeling(json_file, num_topics=5, num_words=10):
"""使用LDA进行主题建模"""
with open(json_file, 'r') as f:
papers_data = json.load(f)
# 提取论文标题
texts = []
for category in papers_data:
for paper_id, paper_info in papers_data[category].items():
match = re.search(r'\|\*\*(.*?)\*\*\|\*\*(.*?)\*\*\|', paper_info)
if match:
title = match.group(2)
texts.append(title)
# 自定义停用词
custom_stop_words = set(['2020', '2021', '2022', '2023', '2024'])
for year in range(1990, 2025):
custom_stop_words.add(str(year))
# CountVectorizer准备数据,支持词组提取
vectorizer = CountVectorizer(
max_features=1000,
stop_words=list(custom_stop_words),
token_pattern=r'(?u)\b[a-zA-Z][a-zA-Z-]+[a-zA-Z]\b',
ngram_range=(1, 3), # 提取1-3个词的词组
min_df=2
)
X = vectorizer.fit_transform(texts)
# 应用LDA
lda = LatentDirichletAllocation(
n_components=num_topics,
random_state=42,
learning_method='online'
)
lda.fit(X)
# 提取主题关键词
feature_names = vectorizer.get_feature_names_out()
topics = []
for topic_idx, topic in enumerate(lda.components_):
top_words_idx = topic.argsort()[:-num_words-1:-1]
filtered_words = []
for i in top_words_idx:
word = feature_names[i]
if (word not in custom_stop_words and
not word.isdigit() and
len(word) >= 3):
filtered_words.append(word)
topics.append(filtered_words[:num_words])
return topics
前端主题可视化组件:
<!-- TopicVisualization.vue -->
<template>
<div class="topic-visualization">
<div class="topics-container">
<div v-for="(topic, index) in topics" :key="index" class="topic-card">
<div class="topic-header">
<h3>主题 {{ index + 1 }}</h3>
</div>
<div class="topic-words">
<span
v-for="(word, wordIndex) in topic"
:key="wordIndex"
class="topic-word"
:style="{
fontSize: `${20 - wordIndex}px`,
opacity: (1 - wordIndex * 0.05),
fontWeight: wordIndex < 3 ? 'bold' : 'normal'
}"
>
{{ word }}
</span>
</div>
</div>
</div>
</div>
</template>
<style scoped>
.topic-card {
background-color: #f8f9fa;
border-radius: 12px;
padding: 20px;
width: calc(33.33% - 25px);
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
transition: transform 0.3s ease, box-shadow 0.3s ease;
border-top: 5px solid #1abc9c;
}
.topic-card:hover {
transform: translateY(-5px);
box-shadow: 0 8px 25px rgba(0, 0, 0, 0.15);
}
.topic-word {
display: inline-block;
background-color: #e9ecef;
color: #495057;
padding: 8px 15px;
border-radius: 30px;
margin-bottom: 8px;
transition: all 0.2s ease;
}
.topic-word:hover {
background-color: #1abc9c;
color: white;
transform: scale(1.05);
}
</style>
6.1.3 关键词趋势预测
基于历史数据预测关键词发展趋势,使用线性回归和季节性调整:
@app.route('/api/predict-trend', methods=['GET'])
def predict_keyword_trend():
try:
keyword = request.args.get('keyword', '').lower()
if not keyword:
return jsonify({'error': '关键词不能为空'}), 400
# 加载论文数据
with open(JSON_FILE, 'r', encoding='utf-8') as f:
papers_data = json.load(f)
# 按月份统计包含该关键词的论文数量
month_counts = {}
total_matching = 0
for category in papers_data:
for paper_id, paper_info in papers_data[category].items():
date_match = re.search(r'\|\*\*([\d-]+)\*\*\|', paper_info)
title_match = re.search(r'\|\*\*(?:[\d-]+)\*\*\|\*\*(.*?)\*\*\|', paper_info)
if date_match and title_match:
date_str = date_match.group(1)
title = title_match.group(1).lower()
if keyword in title:
total_matching += 1
try:
date = datetime.strptime(date_str, '%Y-%m-%d')
month_key = date.strftime('%Y-%m')
month_counts[month_key] = month_counts.get(month_key, 0) + 1
except Exception as e:
continue
# 如果没有找到匹配的论文,生成模拟数据
if not month_counts:
now = datetime.now()
for i in range(12, 0, -1):
date = now - timedelta(days=i*30)
month_key = date.strftime('%Y-%m')
month_counts[month_key] = np.random.randint(2, 10)
# 转换为时间序列
dates = sorted(month_counts.keys())
values = [month_counts[date] for date in dates]
# 使用线性回归预测未来趋势
X = np.arange(len(dates)).reshape(-1, 1)
y = np.array(values)
# 添加非线性特征:二次项和季节性
X_poly = np.column_stack([X, X**2, np.sin(X * (2*np.pi/12))])
# 拟合模型
model = stats.linregress(np.arange(len(dates)), values)
# 预测未来12个月
last_date = datetime.strptime(dates[-1], '%Y-%m')
future_dates = []
future_values = []
for i in range(1, 13):
future_date = last_date + timedelta(days=i*30)
future_month = future_date.strftime('%Y-%m')
future_dates.append(future_month)
# 预测值 = 线性趋势 + 季节性调整 + 随机扰动
trend = model.intercept + model.slope * (len(dates) + i)
seasonal = np.sin((len(dates) + i) * (2*np.pi/12)) * np.std(values) * 0.3
noise = np.random.normal(0, np.std(values) * 0.1)
predicted_value = max(0, trend + seasonal + noise)
future_values.append(int(predicted_value))
return jsonify({
'historical': {
'index': dates,
'values': values
},
'prediction': {
'index': future_dates,
'values': future_values
},
'model_info': {
'slope': float(model.slope),
'intercept': float(model.intercept),
'r_value': float(model.rvalue),
'total_matching': total_matching
}
})
except Exception as e:
print(f"预测趋势时出错: {str(e)}")
return jsonify({'error': str(e)}), 500
前端趋势预测组件:
<!-- KeywordTrendPrediction.vue -->
<template>
<div class="keyword-trend-prediction">
<div class="prediction-form">
<h3>关键词趋势预测</h3>
<p class="description">输入一个研究关键词,预测其在未来一年的发展趋势</p>
<div class="input-group">
<input
v-model="searchKeyword"
type="text"
placeholder="输入关键词,如: neural, vision, transformer..."
@keyup.enter="predictTrend"
/>
<button @click="predictTrend" :disabled="isLoading">
{{ isLoading ? '预测中...' : '预测趋势' }}
</button>
</div>
<div class="keyword-suggestions">
<span>热门关键词: </span>
<span
v-for="(keyword, index) in topKeywords"
:key="index"
class="suggestion-tag"
@click="selectKeyword(keyword.word)"
>
{{ keyword.word }}
</span>
</div>
</div>
<div v-if="!isLoading && predictionResult" class="prediction-result">
<div ref="trendChart" class="trend-chart"></div>
<div class="trend-summary">
<h4>{{ searchKeyword }} 关键词趋势分析</h4>
<div class="stats-group">
<div class="stat-item">
<div class="stat-label">历史最高</div>
<div class="stat-value">{{ Math.max(...historicalData.values).toFixed(0) }}</div>
<div class="stat-date">{{ getMaxValueDate() }}</div>
</div>
<div class="stat-item">
<div class="stat-label">预测峰值</div>
<div class="stat-value">{{ Math.max(...predictionData.values).toFixed(0) }}</div>
<div class="stat-date">{{ getMaxPredictionDate() }}</div>
</div>
<div class="stat-item">
<div class="stat-label">年度增长</div>
<div class="stat-value" :class="getGrowthClass()">{{ getGrowthRate() }}%</div>
<div class="stat-trend">{{ getGrowthTrend() }}</div>
</div>
</div>
</div>
</div>
<!-- 算法说明面板 -->
<div class="algorithm-info-panel">
<h3 class="algorithm-title">预测算法说明</h3>
<div class="algorithm-content">
<p>当前系统使用<strong>线性回归模型</strong>结合<strong>季节性分量</strong>进行时序预测:</p>
<ol>
<li>收集历史数据:按月汇总包含目标关键词的论文数量</li>
<li>数据增强:若数据不足,系统会自动补充模拟数据</li>
<li>主要算法:使用<code>stats.linregress</code>建立线性回归模型</li>
<li>季节性调整:添加基于正弦函数的季节性波动(周期为12个月)</li>
<li>随机扰动:添加小量随机噪声增加预测的自然变化</li>
</ol>
<p class="formula">预测模型:Y = β₀ + β₁X + sin(2π·X/12)·σ(Y)·0.3 + ε</p>
</div>
</div>
</div>
</template>
6.1.4 用户认证系统
实现完整的用户注册、登录和权限管理:
@app.route('/api/register', methods=['POST'])
def register():
data = request.json
if not data or not data.get('username') or not data.get('email') or not data.get('password'):
return jsonify({'message': '请提供完整的注册信息', 'success': False}), 400
username = data.get('username')
email = data.get('email')
password = data.get('password')
# 密码加密
hashed_password = bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt())
try:
conn = sqlite3.connect(DB_PATH)
c = conn.cursor()
c.execute("INSERT INTO users (username, email, password) VALUES (?, ?, ?)",
(username, email, hashed_password.decode('utf-8')))
conn.commit()
conn.close()
return jsonify({'message': '注册成功', 'success': True}), 201
except sqlite3.IntegrityError:
return jsonify({'message': '用户名或邮箱已存在', 'success': False}), 400
except Exception as e:
return jsonify({'message': f'注册失败: {str(e)}', 'success': False}), 500
@app.route('/api/login', methods=['POST'])
def login():
data = request.json
if not data or not data.get('username') or not data.get('password'):
return jsonify({'message': '请提供用户名和密码', 'success': False}), 400
username = data.get('username')
password = data.get('password')
try:
conn = sqlite3.connect(DB_PATH)
c = conn.cursor()
c.execute("SELECT * FROM users WHERE username = ?", (username,))
user = c.fetchone()
conn.close()
if user and bcrypt.checkpw(password.encode('utf-8'), user[3].encode('utf-8')):
# 生成JWT token
token = jwt.encode({
'user_id': user[0],
'username': user[1],
'exp': datetime.utcnow() + timedelta(days=7)
}, app.config['SECRET_KEY'], algorithm="HS256")
return jsonify({
'message': '登录成功',
'success': True,
'token': token,
'user': {
'id': user[0],
'username': user[1],
'email': user[2]
}
}), 200
else:
return jsonify({'message': '用户名或密码错误', 'success': False}), 401
except Exception as e:
return jsonify({'message': f'登录失败: {str(e)}', 'success': False}), 500
6.2 系统特色功能
6.2.1 智能数据解析
系统能够自动解析arXiv论文的Markdown格式数据,提取关键信息:
def parse_paper_info(paper_info):
"""解析论文信息字符串"""
parts = paper_info.split('|')
if len(parts) >= 5:
date = parts[1].replace('**', '') if len(parts) > 1 else ''
title = parts[2].replace('**', '') if len(parts) > 2 else ''
authors = parts[3] if len(parts) > 3 else ''
# 解析PDF链接 - 格式: [ID](http://arxiv.org/abs/ID)
pdf_link_raw = parts[4] if len(parts) > 4 else ''
pdf_link = ''
if pdf_link_raw and pdf_link_raw != 'null':
if '](http://arxiv.org/abs/' in pdf_link_raw:
pdf_link = pdf_link_raw.split('](http://arxiv.org/abs/')[1].split(')')[0]
pdf_link = f'http://arxiv.org/abs/{pdf_link}'
elif pdf_link_raw.startswith('http'):
pdf_link = pdf_link_raw
# 解析代码链接 - 格式: **[link](URL)** 或 null
code_link_raw = parts[5] if len(parts) > 5 else ''
code_link = ''
if code_link_raw and code_link_raw != 'null':
if '](https://github.com/' in code_link_raw:
code_link = code_link_raw.split('](https://github.com/')[1].split(')')[0]
code_link = f'https://github.com/{code_link}'
elif code_link_raw.startswith('http'):
code_link = code_link_raw
return {
'date': date,
'title': title,
'authors': authors,
'pdf_link': pdf_link,
'code_link': code_link
}
return None
6.2.2 响应式UI设计
前端采用现代化的响应式设计,支持多种设备:
<style scoped>
/* 响应式设计 */
@media (max-width: 1200px) {
.topic-card {
width: calc(50% - 25px);
}
}
@media (max-width: 768px) {
.topic-card {
width: 100%;
}
.sidebar {
min-height: 60px;
}
.sidebar-tab {
padding: 12px 18px;
min-width: 80px;
}
.tab-icon {
margin-bottom: 8px;
font-size: 1.2em;
}
.tab-name {
font-size: 13px;
}
}
/* 现代化样式 */
.paper-card {
border: 1px solid #e0e0e0;
border-radius: 12px;
padding: 20px;
background: linear-gradient(135deg, #f8f9fa 0%, #ffffff 100%);
transition: all 0.3s ease;
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
position: relative;
overflow: hidden;
}
.paper-card::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
height: 4px;
background: linear-gradient(90deg, #4ecdc4 0%, #44a08d 100%);
}
.paper-card:hover {
transform: translateY(-5px);
box-shadow: 0 8px 25px rgba(0, 0, 0, 0.15);
}
.paper-links a {
color: #4ecdc4;
padding: 8px 16px;
border-radius: 20px;
background: rgba(78, 205, 196, 0.1);
transition: all 0.3s ease;
font-weight: 500;
text-decoration: none;
}
.paper-links a:hover {
background: rgba(78, 205, 196, 0.2);
transform: scale(1.05);
}
</style>
6.2.3 自动化数据更新
通过GitHub Actions实现无人值守的数据更新:
# .github/workflows/cv-arxiv-daily.yml
name: Run Arxiv Papers Daily
on:
workflow_dispatch: # 手动触发
schedule:
- cron: "0 0/12 * * *" # 每12小时自动执行
jobs:
build:
name: update
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Set up Python Env
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install arxiv requests pyyaml
- name: Run daily arxiv
run: |
python daily_arxiv.py
- name: Push new papers
uses: github-actions-x/commit@v2.9
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
commit-message: "Github Action Automatic Update CV Arxiv Papers"
files: README.md docs/cv-arxiv-daily.json docs/cv-arxiv-daily-web.json docs/index.md
rebase: 'true'
name: ${{ env.GITHUB_USER_NAME }}
email: ${{ env.GITHUB_USER_EMAIL }}
6.3 技术栈总结
后端技术栈:
- Python 3.10+:核心开发语言
- Flask:轻量级Web框架
- arxiv:arXiv API客户端
- requests:HTTP请求库
- scikit-learn:机器学习库(TF-IDF、LDA)
- networkx:图论分析库
- statsmodels:时间序列分析(ARIMA)
- bcrypt:密码加密
- PyJWT:JWT令牌管理
- SQLite:轻量级数据库
前端技术栈:
- Vue 3:渐进式JavaScript框架
- ECharts:数据可视化库
- echarts-wordcloud:词云插件
- Axios:HTTP客户端
- CSS3:现代化样式设计
部署与自动化:
- GitHub Actions:CI/CD自动化
- Docker:容器化部署
- Nginx:反向代理服务器
- Redis:缓存系统(可选)
数据存储:
- JSON:结构化数据存储
- SQLite:用户数据管理
- 文件系统:论文数据存储
6.4 项目价值与应用
6.4.1 学术研究价值
- 及时获取:自动获取最新研究动态
- 趋势分析:通过数据可视化发现研究趋势
- 主题发现:LDA算法自动识别研究主题
- 预测分析:基于历史数据预测未来发展方向
6.4.2 技术实现亮点
- 模块化设计:各组件独立,便于维护和扩展
- 配置驱动:通过YAML文件灵活配置
- 自动化运行:GitHub Actions实现无人值守
- 响应式UI:支持多设备访问
- 数据分析:集成多种机器学习算法
6.4.3 扩展潜力
- 多源集成:可扩展到IEEE、ACM等平台
- AI增强:集成大语言模型进行摘要生成
- 移动端:开发React Native或Flutter应用
- 协作功能:支持团队协作和分享
- 个性化推荐:基于用户兴趣的智能推荐
这个项目不仅是一个实用的学术工具,更是一个展示现代Web开发技术的完整案例,涵盖了从数据爬取、存储、分析到可视化的全流程实现。
DAMO开发者矩阵,由阿里巴巴达摩院和中国互联网协会联合发起,致力于探讨最前沿的技术趋势与应用成果,搭建高质量的交流与分享平台,推动技术创新与产业应用链接,围绕“人工智能与新型计算”构建开放共享的开发者生态。
更多推荐


所有评论(0)