python 操作MYSQL数据库 ORM框架:SQLAchemy
SQLAlchemy是python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。SQLAlchemy本身无法操作数据库,其必须以来pymsql等第三方插件,Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作。规则:导入模块,生
2.1下载安装模块
pip3 install SQLAlchemy
IDE下pycharm python环境路径下添加模块
2.2原理
SQLAlchemy是python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果
利用模块,按照对应规则,自动生成sql语句!
作用:提供简单的规则,自动转换成sql语句,最终还是执行sql语句,获取结果!
ORM操作流程:
创建一个类,类对应数据库的表,类能实例一个对象,这个对象对应表里的数据行
关系对象映射关系:
代码 数据库
类 —> 表
对象 —> 行
DB first :手动创建数据库和表,通过ORM框架 根据数据库,通过类生成一个一个表
code first :手动创建类和数据库,通过ORM框架 利用类创建表
SQLAlchemy本身无法操作数据库,其必须以来pymsql等第三方插件,Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作。
远程连接数据库引擎类型:
MySQL-Python
mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
pymysql
mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
MySQL-Connector
mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
cx_Oracle
oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
更多详见:http://docs.sqlalchemy.org/en/latest/dialects/index.html
SQLAchemy 只负责把类转换成sql语句,连接数据库还是需要插件配合着数据库模块连接的。
连接的数据库不同,转换成的sql语句也不同。
提前必须有连接不同数据库的模块或是软件,SQLAchemy再去配置
规则:导入模块,生成一个基类,然后再用创建类的方法去创建表,sql语句中的语法,全部转换成了方法
虽然没有使用__init__方法,但是在执行定义的时候,会copy到__init__中
找到当前所有继承base的类,然后创建对应的表
注意:利用SQLAchemy 创建表之前,需要先手动创建一个数据库!
2.3操作
导入模块:
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index,CHAR,VARCHAR
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
创建基类:
Base = declarative_base()
通过pymysql与mysql数据库建立远程连接 和设置最大连接数:
engine = create_engine("mysql+pymysql://root:@127.0.0.1:3306/day63?charset=utf8", max_overflow=5)
创建单表:
class 类名(Base):
__tablename__="表名" #创建表名
列名=Column(数据类型,是否为空,主键,自增,索引,唯一索引)
__table_args__(
UniqueConstraint("列名1","列名2","联合唯一索引名"),
index("索引名","列名1","列名2"),
) #创建联合唯一索引
数据类型:Integer 整型;String 字符串类型(CHAR,VARCHAR也可以);
是否为空:nullable=True,
是否为主键:primary_key=True,
是否自增:autoincrement=True
索引:index=True
唯一索引:unique=True
例:
class Users(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True, autoincrement=True)
name = Column(VARCHAR(32), nullable=True, index=True)
email = Column(VARCHAR(16), unique=True)
__table_args__ = (
UniqueConstraint('id', 'name', name='uix_id_name'),
Index('ix_n_ex','name', 'email',),
)
创建有外键关系的多表:
1、先创建一个继承Base基类 存放数据的普通表
2、创建一个继承Base基类 与其有外键关系的表
3、语法:外键名("表名.列名")ForeignKey("usertype.id")
例:
class UserType(Base):
__tablename__ = "usertype"
id = Column(Integer,primary_key=True,autoincrement=True)
title = Column(String(32),nullable=True,index=True)
class Users(Base):
__tablename__ = "users"
id = Column(Integer,primary_key=True,autoincrement=True)
name = Column(String(32),nullable=True,index=True)
email = Column(String(16),unique=True)
u_type_id = Column(Integer,ForeignKey("usertype.id"))
#外键名 = Column(数据类型,ForeignKey("表名.列名"))
生成表或是删除表(可以把操作写成一个函数!):
#找到当前所有继承base的类,然后创建所有的表
def create_table():
Base.metadata.create_all(engine)
#找到当前所有继承base的类,然后删除所有的表
def del_table():
Base.metadata.drop_all(engine)
操作表:
万年不变的 数据行 的增删改查
#首先,先建立链接通道
Session = sessionmaker(bind=engine)
session = Session()
#其次,操作表 注意:操作内填如的内容,一定并必须是表达式!
#增
对哪张表更改,就用其对应的类进行实例化,生成的对象就代表着数据行
#增加单个 session.add()
obj = UserType(title = "黑金用户")
session.add(obj)
#增加多个 session.add_all()
objs =[
UserType(title = "会员用户"),
UserType(title = "超级用户"),
UserType(title = "铂金用户"),
UserType(title = "黑金用户"),
]
session.add_all(objs)
#查 session.query(类名).all() #直接获取整个类(表)下所有的对象(数据行)
#直接操作,获取的是像数据库发送执行的sql语句
res = session.query(UserType) #SQL语句
print(res)
#获取所有对应类(表)的对象(数据行) 列表类型
res_list = session.query(UserType).all()
print(res_list)
#查询操作,获取表中某列的值!是对接收到的整个列表进行循环遍历查找
#查询整个表内的信息 ------->等效于数据库中: select xxx from usertype
res_list = session.query(UserType).all()
for sss in res_list:
print(sss.id,sss.title)
#注意点:.filter()方法是过滤的意思,相当于sql语句中的where
#条件查找表内信息 -------->等效于数据库中: select xxx usertype where 条件
res_list = session.query(UserType).filter(UserType.id >2)
for sss in res_list:
print(sss.id,sss.title)
#注意点:执行删除和更改操作时,都是先把数据行找到(查操作),再进行删或改操作!
#删 找到对应的数据行,删除即可 .delete()
#先找后删,等效于------> delete from usertype where usertype.id > 4
session.query(UserType).filter(UserType.id > 4).delete()
#改 先查后改 注意传值的格式!
#这里有个参数 synchronize_session 没别的招,看源码解释!!!
#对表进行批量更改!
session.query(UserType).filter(UserType.id>0).update({"title":"黑金"})
#动态获取原表的数据(char类型),对表进行批量更改
session.query(UserType).filter(UserType.id>0).update({UserType.title:UserType.title+"SX"},synchronize_session=False)
#动态获取原表的数据(int类型),对表进行批量更改
session.query(UserType).filter(UserType.id>0).update({"title":UserType.id+1},synchronize_session="evaluate")
#查找其他操作:
# 分组,排序,连表,通配符,子查询,limit,union,where,原生SQL、
# 条件
#过滤,又叫条件判断
ret = session.query(Users).filter_by(name='alex').all()
#两个表达式同时存在,逗号分开,不写关系默认是 and
ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all()
#between and
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all()
#in判断 语法:in_
ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()
# not in 判断 语法:表达式最前加 ~
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all()
#子查询
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all()
#逻辑判断: and_ or_ 操作
from sqlalchemy import and_, or_
ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all()
ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all()
ret = session.query(Users).filter(
or_(
Users.id < 2,
and_(Users.name == 'eric', Users.id > 3),
Users.extra != ""
)).all()
# 通配符 .like()的方法调用
ret = session.query(Users).filter(Users.name.like('e%')).all()
ret = session.query(Users).filter(~Users.name.like('e%')).all()
# 限制
ret = session.query(Users)[1:2]
#分页 .limit(n) 取n个数据
res_list = session.query(UserType).limit(2).all()
for sss in res_list:
print(sss.id,sss.title)
# 排序 查表.order_by(列名.desc()/列名.asc()) [.desc() 由大到小;.asc() 由小到大]
ret = session.query(Users).order_by(Users.name.desc()).all()
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all()
# 分组 聚合函数func.方法(列名) 和 .group_by(列名) 方法
from sqlalchemy.sql import func
ret = session.query(Users).group_by(Users.extra).all()
ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).all()
ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all()
# 连表
ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all() #直连
ret = session.query(Person).join(Favor).all()
ret = session.query(Person).join(Favor, isouter=True).all()
#子查询 三种样式
#查询的信息作为另一张表的条件
# 1.select * from b where id in (select id from tb2)
#最为一张新表进行二次筛选
# 2. select * from (select * from tb) as B
#查询语句.subquery() 查询结果作为一个子查询(新表)好在进行下一步的查询。不加.subquery()的话会报错,不再往下查询
# q1 = session.query(UserType).filter(UserType.id > 0).subquery()
# result = session.query(q1).all()
# print(result)
#作为一个列内的数据,在另一张表中显示 ****** .as_scalar()方法
# 3. select id ,(select * from users where users.user_type_id=usertype.id) from usertype;
# session.query(UserType,Users)
# result = session.query(UserType.id,session.query(Users).as_scalar())
# print(result) #查看对应的sql语句
# result = session.query(UserType.id,session.query(Users).filter(Users.user_type_id==UserType.id).as_scalar())
# print(result) #查看对应的sql语句
# 组合(上下连表) .union() 和 .union_all() 注意是:先把信息找到再操作!
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union(q2).all()
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union_all(q2).all()
- 便利的功能 relationship() 与生成表结构无关,仅用于查询方便 释放了连表操作的繁琐查找,直接通过方法定位!
使用规范:哪个类中有外键列,就在外键列下添加。
语法:自定义名=relationship("外键有联系的类名",backref="任意命名")
# 问题1. 获取用户信息以及与其关联的用户类型名称(FK,Relationship=>正向操作)
#初始方法:连表操作
user_list = session.query(Users,UserType).join(UserType,isouter=True)
print(user_list)
for row in user_list:
print(row[0].id,row[0].name,row[0].email,row[0].user_type_id,row[1].title)
user_list = session.query(Users.name,UserType.title).join(UserType,isouter=True).all()
for row in user_list:
print(row[0],row[1],row.name,row.title)
#(FK,Relationship=>正向操作) 先查用户信息表,通过命名的 自定义名 正向获取用户类型
user_list = session.query(Users)
for row in user_list:
print(row.name,row.id,row.user_type.title)
# 问题2. 获取用户类型 (FK,Relationship=>反向操作)
#连表操作:
type_list = session.query(UserType)
for row in type_list:
print(row.id,row.title,session.query(Users).filter(Users.user_type_id == row.id).all())
#反向操作:先查类型表,再通过backref 自定义的变量 反向查找用户信息
type_list = session.query(UserType)
for row in type_list:
print(row.id,row.title,row.xxoo)
PS:正向操作与反向操作,是相对于外键来相对判断的!
例如:A表与B表,A表中建立了与B表联系的外键,A表通过外键获取B表中的信息,叫正向操作;反之,叫反向操作!
最后,操作及语法写完后,都需要提交给数据库去执行,不再使用也需要断开连接!
session.commit() #提交
session.close() #关闭连接
#!/usr/bin/env python
# _*_ coding:utf-8 _*_
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
Base = declarative_base()
engine = create_engine("mysql+pymysql://root:@127.0.0.1:3306/day63?charset=utf8",max_overflow=5)
class UserType(Base):
__tablename__ = "usertype"
id = Column(Integer,primary_key=True,autoincrement=True)
title = Column(String(32),nullable=True,index=True)
class Users(Base):
__tablename__ = "users"
id = Column(Integer,primary_key=True,autoincrement=True)
name = Column(String(32),nullable=True,index=True)
email = Column(String(16),unique=True)
u_type_id = Column(Integer,ForeignKey("usertype.id"))
u_type = relationship("UserType",backref="sss")
def create_table():
Base.metadata.create_all(engine)
def del_table():
Base.metadata.drop_all(engine)
#类 --> 表
#对象 --> 行
#建立链接通道
Session = sessionmaker(bind=engine)
session = Session()
#操作内填入的内容,必须是表达式
########## 增加 ###################
#增加单个
# obj = UserType(title = "黑金用户")
# session.add(obj)
#增加多个
# objs =[
# UserType(title = "会员用户"),
# UserType(title = "超级用户"),
# UserType(title = "铂金用户"),
# UserType(title = "黑金用户"),
# ]
# session.add_all(objs)
############ 查询 ################
# res = session.query(UserType) #SQL语句
# print(res)
# res_list = session.query(UserType).all() #获取所有对应类(表)的对象(数据行) 列表类型
# print(res_list)
#select xxx from usertype
# res_list = session.query(UserType).limit(2).all()
# for sss in res_list:
# print(sss.id,sss.title)
#
# #select xxx usertype where ***
# res_list = session.query(UserType).filter(UserType.id >2)
# for sss in res_list:
# print(sss.id,sss.title)
############### 删除 ###################
# delete from usertype where usertype.id > 4
# session.query(UserType).filter(UserType.id > 4).delete()
################ 更改 ########################
#这里有个参数 synchronize_session 没别的招,看源码解释!!!
# session.query(UserType).filter(UserType.id>0).update({"title":"黑金"}) #对表进行批量更改
# session.query(UserType).filter(UserType.id>0).update({UserType.title:UserType.title+"SX"},synchronize_session=False) #动态获取原先的数据,对表进行批量更改
# session.query(UserType).filter(UserType.id>0).update({"title":UserType.id+1},synchronize_session="evaluate") #对表进行批量更改
############# 查询其他操作 #################
# 分组,排序,连表,通配符,limit,union,where,原生SQL#
#条件 and or
# ret = session.query(Users).filter(Users.id > 1, Users.name == "sesc").all()
# for row in ret:
# print(row.email)
# #正向操作
# res = session.query(Users)
# for row in res:
# print(row.id,row.name,row.u_type.title)
#
# #反向操作
# res = session.query(UserType)
# for row in res:
# for a in row.sss:
# print(row.id,row.title,a.name)
session.commit()
session.close()
部分代码举例!从上边粘贴测试即可!
DAMO开发者矩阵,由阿里巴巴达摩院和中国互联网协会联合发起,致力于探讨最前沿的技术趋势与应用成果,搭建高质量的交流与分享平台,推动技术创新与产业应用链接,围绕“人工智能与新型计算”构建开放共享的开发者生态。
更多推荐

所有评论(0)