Python机器学习记录_KNN预测男女
import sklearnimport numpy as npfrom sklearn.neighbors import KNeighborsClassifierimport sklearn.datasets as dataif __name__ == '__main__':x_train = [[192,90,46],[180,80,44],[160,45,36],[170,65,41],[1
·
import sklearn
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
import sklearn.datasets as data
if __name__ == '__main__':
x_train = [[192,90,46],[180,80,44],[160,45,36],[170,65,41],[154,41,34],[165,60,40]]
y_train = ["boy","boy","girl","boy","girl","boy"]
KNN = KNeighborsClassifier(n_neighbors=3)
KNN.fit(x_train,y_train)
print(KNN.predict([[155, 45, 35],[175,70,42]]))
print(range(1, 10)[::2][1])
Python预测蓝蝴蝶:
import sklearn
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
import sklearn.datasets as data
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
if __name__ == '__main__':
iris = data.load_iris()
x_train = iris.data
y_train = iris.target
KNN = KNeighborsClassifier()
KNN.fit(x_train,y_train)
print(KNN.predict(x_train))
print(y_train)
print(KNN.score(x_train, y_train))
cMap = ListedColormap(["#FF0000","#00FF00","#0000FF"])
plt.scatter(x_train[:,2],x_train[:,3])
plt.scatter(x_train[:,2],x_train[:,3],c=iris.target,cmap=cMap)
print(iris.target)
# plt.plot(x_train[:,1],y_train)
# plt.plot(x_train[:,2],y_train)
# plt.plot(x_train[:,3],y_train)
# plt.plot(x_train[:,0],y_train)
plt.plot(x_train, y_train)
plt.show()
print(x_train)
print(y_train)
DAMO开发者矩阵,由阿里巴巴达摩院和中国互联网协会联合发起,致力于探讨最前沿的技术趋势与应用成果,搭建高质量的交流与分享平台,推动技术创新与产业应用链接,围绕“人工智能与新型计算”构建开放共享的开发者生态。
更多推荐


所有评论(0)