使用VGG16来对CUB_200_2011鸟类数据进行分类
使用VGG16来对CUB_200_2011鸟类数据进行分类
·
import os
import numpy as np
import keras
from keras import models, layers, optimizers
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.imagenet_utils import decode_predictions
import matplotlib.pyplot as plt
from keras.applications import vgg16, resnet50
from keras.preprocessing import sequence
from keras.models import Sequential, Model
from keras.layers import Dense, Embedding, Reshape
from keras.layers import GRU, Input, Lambda
from keras.layers import Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D, UpSampling2D
from keras.callbacks import TensorBoard, CSVLogger, EarlyStopping
mode = "train"
# mode = "test"
# CUB_200_2011 data
train_dir = "./data/cub-200-2011/train/images"
val_dir = "./data/cub-200-2011/val/images"
test_dir = "./data/cub-200-2011/test/images"
classes_count = 200
# Load pre-trained models
image_size = 224
history = None
if mode == "train":
# VGG16 base
vgg_model = vgg16.VGG16(weights="imagenet", include_top=False, input_shape=(image_size, image_size, 3))
base_model = vgg16.VGG16
trainable_layers = 4
base_model = base_model(weights="imagenet", include_top=False, input_shape=(image_size, image_size, 3))
# Freeze all but the last 4 layers
for layer in base_model.layers[:-trainable_layers]:
layer.trainable = False
# Check the trainable status of the individual layers
for layer in base_model.layers:
print(layer, layer.trainable)
# Create our new model
bird_model = models.Sequential()
# Add the vgg convolutional base model
bird_model.add(base_model)
# 解码decoder
bird_model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
bird_model.add(UpSampling2D((2, 2)))
bird_model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
bird_model.add(UpSampling2D((2, 2)))
bird_model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
bird_model.add(UpSampling2D((2, 2)))
bird_model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
bird_model.add(UpSampling2D((2, 2)))
bird_model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
bird_model.add(UpSampling2D((2, 2)))
bird_model.add(Conv2D(3, (3, 3), activation='sigmoid', padding='same'))
# 全连接dense
bird_model.add(layers.Flatten())
bird_model.add(layers.Dense(1024, activation="relu"))
bird_model.add(layers.Dropout(0.5))
bird_model.add(layers.Dense(classes_count, activation="softmax"))
# Show a summary of the model
bird_model.summary()
# Set up data generators
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True,
fill_mode="nearest"
)
validation_datagen = ImageDataGenerator(
rescale=1./255
)
train_batchsize = 50
validation_batchsize = 5
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(image_size, image_size),
batch_size=train_batchsize,
class_mode="categorical"
)
validation_generator = validation_datagen.flow_from_directory(
val_dir,
target_size=(image_size, image_size),
batch_size=validation_batchsize,
class_mode="categorical",
shuffle=False
)
# Set up early stopping
early_stop = keras.callbacks.EarlyStopping(
monitor="val_loss",
min_delta=0,
patience=10,
verbose=0,
mode="auto"
)
# Compile the model
bird_model.compile(
loss="categorical_crossentropy",
optimizer=optimizers.RMSprop(lr=1e-4),
metrics=["acc"]
)
# Train the model
history = bird_model.fit_generator(
train_generator,
callbacks=[early_stop],
steps_per_epoch=train_generator.samples/train_generator.batch_size,
epochs=2,
validation_data=validation_generator,
validation_steps=validation_generator.samples/validation_batchsize,
verbose=1
)
# Save the model
bird_model.save("vgg16_decoder_cub-200-2011.h5")
exit(0)
elif mode == "test":
bird_model = models.load_model("vgg16_decoder_cub-200-2011.h5")
bird_model.compile(
loss="categorical_crossentropy",
optimizer=optimizers.RMSprop(lr=1e-4),
metrics=["acc"]
)
test_datagen = ImageDataGenerator(
rescale=1. / 255
)
test_batchsize = 5
test_generator = test_datagen.flow_from_directory(
test_dir,
target_size=(image_size, image_size),
batch_size=test_batchsize,
class_mode="categorical"
)
history = bird_model.evaluate_generator(
test_generator,
steps=test_generator.samples / test_generator.batch_size,
verbose=1
)
print(history)
exit(0)

DAMO开发者矩阵,由阿里巴巴达摩院和中国互联网协会联合发起,致力于探讨最前沿的技术趋势与应用成果,搭建高质量的交流与分享平台,推动技术创新与产业应用链接,围绕“人工智能与新型计算”构建开放共享的开发者生态。
更多推荐
所有评论(0)